Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a = (7^2.2^3+6^2.2^3+2.5.2^4-40) : 8
= (7^2.8+6^2.8+2^2.5.8-5.8) : 8
= 7^2+6^2+2^2.5-5 = 49+36+20-5 = 100
k mk nha
B = 2/5x7 + 3/7x10 + 4/10x14 + 7/14x21 + 9/21x30
B = 1/5 - 1/7 + 1/7 - 1/10 + 1/10 - 1/14 + 1/14 - 1/21 + 1/21 - 1/30
B = 1/5 - 1/30
B = 6/30 - 1/30
B = 5/30 = 1/6
B = 2/5x7 + 3/7x10 + 4/10x14 + 7/14x21 + 9/21x30
B = 1/5 - 1/7 + 1/7 - 1/10 + 1/10 - 1/14 + 1/14 - 1/21 + 1/21 - 1/30
B = 1/5 - 1/30
B = 6/30 - 1/30
B = 5/30 = 1/6
soyeon làm sai vì nó là 2/5x7 chứ có phải là 1/5x7 đâu mà lại tách ra như thế?
\(-\frac{12}{35}\div\frac{7}{11}-\frac{23}{35}\div\frac{7}{11}-\frac{5}{11}\)
\(=\left(-\frac{12}{35}-\frac{23}{35}\right)\div\frac{7}{11}-\frac{5}{11}\)
\(=-1\div\frac{7}{11}-\frac{5}{11}\)
\(=-\frac{11}{7}-\frac{5}{11}\)
\(=-\frac{156}{77}\)
\(A=3\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{97\times100}\right)\)
\(A=3\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\times\left(1-\frac{1}{100}\right)\)
\(A=3\times\frac{99}{100}\)
\(A=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+......+\frac{3^2}{97.100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Đặt \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
Ta có: \(S=\frac{3}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{97.100}\right)\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{97}-\frac{1}{100}\)
\(S=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=3.S=3.\frac{99}{100}=\frac{297}{100}\)
giải đầy đủ ak bn
=2787