Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
Ta có:
\(2x=3y=-2z\) hay \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-3}\)
Từ \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-3}\) suy ra \(\dfrac{2x}{6}=\dfrac{3y}{6}=\dfrac{4z}{-12}\)
Áp dụng tính chất cơ bản của phân số, ta có:
\(\dfrac{2x}{6}=\dfrac{3y}{6}=\dfrac{4z}{-12}=\dfrac{2x-3y+4z}{6-6+\left(-12\right)}=\dfrac{48}{-12}=-4\)
\(\Rightarrow x=-4\cdot3=-12\)
\(\Rightarrow y=-4\cdot2=-8\)
\(\Rightarrow z=\left(-4\right)\cdot\left(-3\right)=12\)
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y+4z}{1-1-2}=\frac{48}{-2}=-24\)
=> \(\hept{\begin{cases}2x=-24\\3y=-24\\-2z=-24\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}}\)
\(2c=3y=-2zz\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{2}=\frac{-4z}{2}\)
Áp dụng tính chất của tỉ số bằng nhau ta có :
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}\)
Có: \(2x=3y=-2z\)
=> \(2x=3y\) và \(3y=-2z\)
=> \(\frac{x}{3}=\frac{y}{2}\) và \(\frac{y}{-2}=\frac{z}{3}\)
=> \(\frac{x}{3}=\frac{y}{2}\) và \(\frac{y}{2}=\frac{-z}{3}\)
=> \(\frac{x}{3}=\frac{y}{2}=-\frac{z}{3}\)
=>\(\frac{2x}{6}=\frac{-3y}{-6}=\frac{4z}{-12}=\frac{2x-3y+4z}{6-6-12}=\frac{48}{-12}=-4\)
+) \(2x=6\cdot-4=-24\Rightarrow x=-12\)
+)\(-3y=-6\cdot-4=24\Rightarrow y=-8\)
+)\(4z=-12\cdot-4=48\Rightarrow x=12\)
Từ 2x=3y= - 2 z
\(\Rightarrow\frac{2x}{6}=\frac{3y}{6}=-\frac{2z}{6}\)
\(\Rightarrow\frac{2x}{6}=\frac{3y}{6}=\frac{4z}{-12}=\frac{2x-3y+4z}{6-6+12}=\frac{48}{-12}=-4\)
\(\Rightarrow\begin{cases}x=-24\\y=-8\\z=12\end{cases}\)
sử dụng tính chất của dãy tỉ số bằng nhau
Vô câu hỏi tương tự mà tham khảo
Tự làm đi nhóc cái này còn cơ bản nên suy nghĩ chút đi
Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{3}\) => \(\frac{2x}{20}=\frac{3y}{18}=\frac{2z}{6}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{20}=\frac{3y}{18}=\frac{2z}{6}=\frac{2x+3y-2z}{20+18-6}=\frac{16}{32}=\frac{1}{2}\)
=> \(\hept{\begin{cases}\frac{x}{10}=\frac{1}{2}\\\frac{y}{6}=\frac{1}{2}\\\frac{z}{3}=\frac{1}{2}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{2}.10=5\\y=\frac{1}{2}.6=3\\z=\frac{1}{2}.3=\frac{3}{2}\end{cases}}\)
Vậy ...
Từ \(2x=3y=-2z\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{-\dfrac{1}{2}}\)
\(\Rightarrow\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có;
\(\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}=\dfrac{2x-3y+4z}{1-1+\left(-2\right)}=\dfrac{48}{-2}=-24\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{\dfrac{1}{2}}=-24\cdot\dfrac{1}{2}=-12\\\dfrac{y}{\dfrac{1}{3}}=-24\Rightarrow y=-24\cdot\dfrac{1}{3}=-8\\\dfrac{z}{-\dfrac{1}{2}}=-24\Rightarrow z=-24\cdot\left(-\dfrac{1}{2}\right)=12\end{matrix}\right.\)
\(2x=3y=-2z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{-1}{2}}\)
\(\Rightarrow\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}\)
\(=\dfrac{2x-3y+4z}{1-1+-2}=\dfrac{48}{-2}=-24\)
Áp dụng tính
đây là hệ phương trình hả em ?
Yul Ngọc Ánh Tìm x, y và z ạ