K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>2x^2+2x-3x-3+x^2+2x=3x^2+12x+12

=>12x+12=x-3

=>11x=-15

=>x=-15/11

1 tháng 8 2016
Câu a: x=1 Câu b: đễ thấy là phương trình bậc 2 với 1 ẩn. Giải bình thường là ra
19 tháng 8 2016

a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54

26x +28 = 54

26x = 54-28 = 26

x = 1

b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33

39x +6 = -33

39x = -33-6 = -39

x = -1

21 tháng 7 2016

Ta có: C(x) =\(x^2-9x+20=x^2-4x-5x+20=\left(x-4\right)\left(x-5\right)\)

Vậy nghiệm của C(x) là x\(\in\left\{4;5\right\}\)

Ta có: D(x)\(=4x^2+4x+1=\left(2x+1\right)^2\)

Vậy D(x) có nghiệm x=-1/2

Ta có: E(x)=\(2\left(x-1\right)-5\left(x-2\right)=2x-2-5x +10\)\(8-3x\)

Vậy E(x) có nghiệm x=8/3

Ta có: F(x)=\(2x^2-5x+2=\left(2x^2-x\right)-\left(4x-2\right)\)\(\left(x-2\right)\left(2x-1\right)\)

Vậy F(x) có nghiệm là x\(\in\left\{\frac{1}{2};2\right\}\)

 

21 tháng 7 2016

\(C\left(x\right)=x^2-9x+20\)

\(C\left(x\right)=x^2-4x-5x+20\)

\(C\left(x\right)=\left(x-4\right)\left(x-5\right)\)

=> nghiệm của phương trình là x = 4 hoặc x = 5

\(D\left(x\right)=4x^2+4x+1\)

\(D\left(x\right)=\left(2x+1\right)^2\)

=> nghiệm của phương trình là x = -1/2

\(E\left(x\right)=2\left(x-1\right)-5\left(x-2\right)\)

\(E\left(x\right)=2x-2-5x+10\)

\(E\left(x\right)=-3x-7\)

=> nghiệm của phương trình là x = -7/3

\(F\left(x\right)=2x^2-5x+2\)

\(F\left(x\right)=2x^2-4x-x+2\)

\(F\left(x\right)=\left(x-2\right)\left(2x-1\right)\)

=> nghiệm của phương trình là x = 2 hoặc x = 1/2

29 tháng 9 2019

a) (2x - 1)(x^2 - 1 + 1) = 2x^3 - 3x^2 + 2

(2x - 1).x^2 = 2x^3 - 3x^2 + 2

2x^3 - x^2 = 2x^3 - 3x^2 + 2

-x^2 = -3x^2 + 2

2x^2 = 2

x^2 = 1

=> x = 1; -1

b) (x + 2)(x + 2) - (x - 2)(x - 2) = 8x

(x + 2)^2 - (x - 2)^2 = 8x

x^2 + 4x + 4 - x^2 + 4x - 4 = 8x

8x = 8x

=> x thuộc N*

c) (x + 1)(x + 2)(x + 5) - x^3 - 8x^2 = 27

x^3 + 5x^2 + 2x^3 + 10x + x^2 + 5x + 2x + 10x - x^3 - x^2 = 27

17x + 10 = 27

17x = 27 - 10

17x = 17

=> x = 1

d) (x + 1)(x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0

x^3 + 2x^2 + 4x + x^2 + 2x + 4 - x^3 - 3x^2 + 16 = 0

6x + 20 = 0

6x = -20

x = -20/6

=> x = -10/3

25 tháng 8 2020

a)

 Ta có

 \(\left(x-1\right)^3-\left(x-1\right)^3-\left(6x-1\right)=-10\)

\(\Leftrightarrow-6x+1=-10\)

\(\Leftrightarrow-6x=-11\)

\(\Leftrightarrow x=\frac{11}{6}\)

  Vậy \(x=\frac{11}{6}\)

25 tháng 8 2020

a) ( x - 1 )3 - ( x - 1 )3 - ( 6x - 1 ) = -10

<=> -( 6x - 1 ) = -10

<=> -6x + 1 = -10

<=> -6x = -11

<=> x = 11/6

b) ( 2x - 1 )2 + ( 2x - 1 )( 2x - 3 ) - ( 2x + 3 )2 + ( 2x + 3 )( -3x ) - 24 = 4

<=> 4x2 - 4x + 1 + 4x2 - 8x + 3 - ( 4x2 + 12x + 9 ) - 6x2 - 9x - 24 = 4

<=> 4x2 - 4x + 1 + 4x2 - 8x + 3 - 4x2 - 12x - 9 - 6x2 - 9x - 24 = 4

<=> -2x2 - 33x - 29 - 4 = 0

<=> -2x2 - 33x - 33 = 0 ( muốn kết quả thì ib còn mình để là vô nghiệm vì nó có nghiệm vô tỉ )

=> Vô nghiệm 

13 tháng 3 2018

a) \(\Leftrightarrow x^4-4x-1=0\)

\(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)

\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\)

\(\Leftrightarrow x^2-\sqrt{2}x-\sqrt{2}+1=0\)

Tự giải pt bậc 2 nhak :))))

14 tháng 7 2018

\(a,\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow x-3=\pm2\)

\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)

Vậy \(x=5\)hoặc \(x=1\)

\(b,x^2-2x=24\)

\(\Leftrightarrow x^2-2x+1-1=24\)

\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)

\(\Leftrightarrow x-1=\pm5\)

\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)

Vậy \(x=6\) hoặc \(x=-4\)

14 tháng 7 2018

\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow10x+255=0\)

\(\Leftrightarrow10x=-255\)

\(\Leftrightarrow x=\frac{-51}{2}\)

\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x-27=1\)

\(\Leftrightarrow4x=28\)

\(\Leftrightarrow x=7\)

5 tháng 10 2019

Một hình chữ nhật có chu vi gấp 6 lần chiều rộng biết chiều rộng bằng 4 tính diện tích hình chữ nhật các bạn lm từng bước một giúp mk nhé cảm ơn :)))))