Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=3x-\frac{8}{x-5}\Rightarrow T=\frac{3x-15+7}{x-5}\Rightarrow T=\frac{3\left(x-5\right)+7}{x-5}\Rightarrow T=3+\frac{7}{x-5}\)
Mà để x là số nguyên \(7⋮x-5\)
\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\Rightarrow x\in\left\{-2;4;6;12\right\}\)
Câu 1 :
\(a,2\left(\frac{3}{4}-5x\right)=\frac{4}{5}-3x\)
\(\Rightarrow\frac{3}{2}-10x=\frac{4}{5}-3x\)
\(\Rightarrow7x=\frac{3}{2}-\frac{4}{5}\)
\(\Rightarrow7x=\frac{7}{10}\)\(\Leftrightarrow x=0,1\)
\(b,\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow11x=\frac{2}{3}+1-\frac{3}{2}\)
\(\Rightarrow11x=\frac{4+6-9}{6}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
Câu 2 :
\(a,\frac{2}{x-1}< 0\)
Vì \(2>0\Rightarrow\)để \(\frac{2}{x-1}< 0\)thì \(x-1< 0\Leftrightarrow x< 1\)
\(b,\frac{-5}{x-1}< 0\)
Vì \(-5< 0\)\(\Rightarrow\)để \(\frac{-5}{x-1}< 0\)thì \(x-1>0\Rightarrow x>1\)
\(c,\frac{7}{x-6}>0\)
Vì \(7>0\Rightarrow\)để \(\frac{7}{x-6}>0\)thì \(x-6>0\Rightarrow x>6\)
\(\frac{1}{x-1}-\frac{2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
=> \(\frac{1}{x-1}-\frac{1}{2}+\frac{4}{5}=\frac{5}{-2}.\frac{1}{x-1}\)
=> \(\frac{1}{x-1}+\frac{3}{10}=\frac{-5}{2}.\frac{1}{x-1}\)
=> \(-\frac{5}{2}.\frac{1}{x-1}-\frac{1}{x-1}=\frac{3}{10}\)
=> \(\frac{1}{x-1}.\left(-\frac{7}{2}\right)=\frac{3}{10}\)
=> \(\frac{1}{x-1}=\frac{-3}{35}\)
=> -3(x - 1) = 35
=> -3x + 3 = 35
=> -3x = 32
=> x = -32/3
\(\frac{1}{x-1}-\frac{2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)ĐK \(x\ne1\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{2}{3}\left(-\frac{9}{20}\right)=\frac{5}{2-2x}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2-2x}\)
\(\Leftrightarrow\frac{10\left(2-2x\right)}{10\left(x-1\right)\left(2-2x\right)}+\frac{3\left(x-1\right)\left(2-2x\right)}{10\left(x-1\right)\left(2-2x\right)}=\frac{50\left(x-1\right)}{10\left(2-2x\right)\left(x-1\right)}\)
\(\Leftrightarrow20-20x+12x-6x^2-6=50x-50\)
\(\Leftrightarrow14-8x-6x^2=50x-50\)
\(\Leftrightarrow64-58x-6x^2=0\)
\(\Leftrightarrow-2\left(3x+32\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{32}{3}\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)
a) Ta có A = \(\frac{x-10}{x-5}=\frac{x-5-5}{x-5}=1-\frac{5}{x-5}\)
Vì \(1\inℤ\Rightarrow\frac{-5}{x-5}\inℤ\)
=> \(-5⋮x-5\)
=> x - 5 \(\in\)Ư(-5)
=> \(x-5\in\left\{1;5;-1;-5\right\}\)
=> \(x\in\left\{6;11;4;0\right\}\)
Vậy khi \(x\in\left\{6;11;4;0\right\}\)thì A là số hữu tỉ
b) Ta có B = \(\frac{3x-2}{x-5}=\frac{3x-15+13}{x-5}=\frac{3\left(x-5\right)+13}{x-5}=3+\frac{13}{x-5}\)
Vì \(3\inℤ\Rightarrow\frac{13}{x-5}\inℤ\)
=> \(13⋮x-5\)
=> \(x-5\inƯ\left(13\right)\Rightarrow x-5\in\left\{1;13;-1;-13\right\}\)
=> \(x\in\left\{6;18;4;-8\right\}\)
Vậy khi \(x\in\left\{6;18;4;-8\right\}\)thì B là số hữu tỉ
c) Ta có C = \(\frac{x-3}{2x}\)
=> 2C = \(\frac{2x-6}{2x}=1-\frac{6}{2x}=1-\frac{3}{x}\)
Vì \(1\inℤ\Rightarrow\frac{3}{x}\inℤ\Rightarrow3⋮x\Rightarrow x\inƯ\left(3\right)\Rightarrow x\in\left\{1;3;-1;-3\right\}\)
Vậy khi \(x\in\left\{1;3;-1;-3\right\}\)thì C là số hữu tỉ
\(\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)
\(\frac{x}{2}-\frac{3x}{5}-\frac{13}{5}=-\frac{7}{5}-\frac{7}{10}x\)
\(\left(\frac{1}{2}-\frac{3}{5}+\frac{7}{10}\right)x=-\frac{7}{5}+\frac{13}{5}\)
\(\frac{3}{5}x=\frac{6}{5}\)
\(x=2\)
câu này cậu làm sai r