Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là bài toán tổng hiệu,đã có tổng của cả P(x) và Q(x) nên\(P\left(x\right)=\frac{x^2+1+2x}{2}=\frac{\left(x^2+x\right)+\left(x+1\right)}{2}=\frac{\left(x+1\right)^2}{2}\)
\(Q\left(x\right)=P\left(x\right)-2x=\frac{\left(x+1\right)^2}{2}-2x=\frac{x^2+2x+1-4x}{2}=\frac{x^2-2x+1}{2}=\frac{\left(x-1\right)^2}{2}\)
Nếu bn hỏi x^2-2x+1 sao lại =(x-1)^2 thì ph giống như (x+1)^2 nhé.
2(x - 3) + 5 = 3x - 1
2x-6+5=3x-1
2x-1=3x-1
2x-3x=-1+1
-x=0
x=0
2x(3x + 2) - 5 = 3( 2x^2 - 2x + 1)
6x2+4x-5=6x2-6x+3
6x2+4x-6x2+6x=3+5
10x=8
x=4/5
(3x - 2)(2x - 3) + 5 = 5
(3x-2)(2x-3)=0
=>3x-2=0 hoặc 2x-3=0
=>x=2/3 hoặc x=3/2
2 , 5 - x = 1 , 3
x = 2 , 5 - 1 , 3
x = 1 , 2
Chúc bạn chăm ngoan học giỏi !
=> 4x^2 - 12x + 4 = 2x^2 - 2x - 2 - 2x^2 - 2x - 13
=> 4x^2 - 12x + 4 = - 4x - 15
=> 4x^2 - 12x + 4x + 4 + 15 = 0
=> 4x^2 - 8x + 19 = 0
Đề sai
\(\left(2x+1\right)^2\ge0;|y+1,2|\ge0\Rightarrow\left(2x+1\right)^2+|y+1,2|\ge0\).Dấu = xảy ra chỉ khi :
\(\hept{\begin{cases}\left(2x+1\right)^2=0\\|y+1,2|=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\y+1,2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-0,5\\y=-1,2\end{cases}\Rightarrow}x+y=-1,7}\)
a, 2009; 0
b, x= 0.5 ; y= 0.4; z=0.9
sai thì thôi nhé
mình không hiểu ý của câu hỏi.
Tìm x nha bạn!!