K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=384

Đúng 100%

Tick cho mình nhé
 

3 tháng 1 2018

1 + 1 = 2 ; 2 + 2 = 4 ; 3 + 3 = 6 ; 4 + 4 = 8 ; 5 + 5 = 10

Tính :

a) 13 cm2 + 33 cm2 = 46 cm2

b) 114 cm2 - 59 cm2 = 55 cm2

c) 10 cm2 x 9 = 90 cm2

d) 72 cm2 : 4 = 18 cm2

3 tháng 1 2018

1 + 1 = 2

2 + 2 = 4

3 + 3 = 6

4 + 4 = 8

5 + 5 = 10

a) 13 cm 2 + 33 cm 2  = 46 cm2

b) 114 cm 2 - 59 cm 2 = 173 cm2

c) 10 cm 2 x 9 = 90cm2

d) 72 cm 2 : 4 = 18cm2

6 tháng 11 2021

Đây mà là toán lớp 1 á hả????????/

6 tháng 11 2021

đúng rùi , toán  lớp 1 nâng cao thành toán cấp 2 ,3

8 tháng 11 2021

não lớp 5 (me) khi nhìn bài này kiểu : (banh não)

8 tháng 11 2021

dạng toán của lớp 1 à 

17 tháng 7 2017

3^(n+2)- 2^(n+2)+3^n-2^n

 = 10.3^n-5.2^n

 =5. (2.3^n -2^n)

Ta có 2.3^n là số chẵn

 2^n cũng chẵn

 Vậy 2.3^n -2^n bằng số chẵn

 5 nhân với số chẵn thì ra số chẵn chia hết cho 10

30 tháng 11 2015

ngoài cách này ra nha

Dãy số 10,102,103,...1020 có tất cả 20 số. Có 20 số khác nhau mà chỉ có 19 số dư trong phép chia cho 19, do đó tồn tại hai số cùng số dư trong phéo chia cho 19.

Gọi 2 số đó là 10và 10n. $$

Như vậy 10- 10n chia hết cho 19 hay 10n.(10m-n-1) chia hết cho 19

Vì ƯCLN(10n;19)=1 nên 10m-n-1 chia hết cho 19 hay 10m-n chia 19 dư 1

Rõ ràng 10m-n là 1 số thuộc dãy số trên bởi 1> hoặc = n

8 tháng 11 2021

đây là toán lớp 1 à?

12 tháng 6 2019

Dễ thấy \(2^x=y^2-153\)có Vế phải luôn nguyên nên \(2^x\in Z\Rightarrow x\in N\)

\(2^x+12^2=y^2-3^2\Leftrightarrow2^x+153=y^2.\)(1)

Nếu x là số lẻ , khi đó \(2^x+153\)chia  3 dư 2 ( Vì 153 chia hết cho 3 ,và \(2^x\)với x là lẻ thì luôn chia 3 dư 2)

                                    \(y^2\)chia cho 3 dư 0 hoặc dư 1 (cái này là theo tính chất chia hết của số chính phương)

Như vậy 2 vế của (1) mâu thuẫn => x không thể là số lẻ. Vậy x là số chẵn.

Đặt \(x=2k\left(k\in N\right)\), ta có:

\(2^{2k}+153=y^2\Leftrightarrow y^2-\left(2^k\right)^2=153\)

\(\Leftrightarrow\left(y-2^k\right)\left(y+2^k\right)=153.\)

Nhận thấy \(y-2^k\le y+2^k\left(dok\in N\right)\)và \(y-2^k;y+2^k\)đều là các số nguyên

Mà 153=9.17=(-17).(-9)=3.51=(-51).(-3)=1.153=(-153).(-1)  suy ra xảy ra 6 trường hợp:

\(\hept{\begin{cases}y-2^k=9\\y+2^k=17\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\2^k=4\end{cases}\Leftrightarrow.}\hept{\begin{cases}k=2\\y=13\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=13\end{cases}\left(tm\right).}}\)

\(\hept{\begin{cases}y-2^k=-17\\y+2^k=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-13\\2^k=4\end{cases}\Leftrightarrow}\hept{\begin{cases}k=2\\y=-13\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-13\end{cases}}\left(tm\right).}\)

\(\hept{\begin{cases}y-2^k=3\\y+2^k=51\end{cases}\Leftrightarrow\hept{\begin{cases}y=27\\2^k=24\end{cases}}}\)(vì không có k nguyên nào để \(2^k=24\)) => loại

\(\hept{\begin{cases}y-2^k=-51\\y+2^k=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-27\\2^k=24\end{cases}\left(loại\right).}\)

\(\hept{\begin{cases}y-2^k=-153\\y+2^k=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-77\\2^k=76\end{cases}}\)(vì không có k nguyên nào để \(2^k=76\)) => loại

\(\hept{\begin{cases}y-2^k=1\\y+2^k=153\end{cases}\Leftrightarrow}\hept{\begin{cases}y=77\\2^k=76\end{cases}\left(loại\right)}\)

Vậy các nghiệm nguyên của phương trình đã cho là \(\left(x,y\right)=\left(4;13\right),\left(4;-13\right).\)

13 tháng 6 2019

mnb,.mnbhgvjbnmkjlbh nkjnb mhjnugvhjygftyuygyh