Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A/ 2^25+2^26+2^27
=2^24.2+2^24.2^2+2^24.2^3
=2^24.(2+2^2+2^3)
=2^24.(2+4+8)
=2^24.14
Vi 14 chia hết cho7=>2^24.14 chia hết cho 7
Vay (2^25.2^26.2^27) chia hết cho 7.
Câu b tương tự
3^21*(1+3+3^2)+3^24*(1+3+3^2)+3^27*(1+3+3^2)=13*321+13*324+13*327=13*(3^21+3^24+3^27) chia hết cho 13
A=(1+5+5^2)+...+5^402(1+5+5^2)=31*(1+5^3+...+5^402) chia hết cho 31
3A-A=3^2009-3 => 2A+3=32009 => n=2009
2*(1+2)+23*(1+2)+...+299(1+2)=3*(2+2^3+...+2^99) chia hết cho 3
1) \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14⋮14\)
vậy đpcm
3) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)=3^{22}.405⋮405\)
vậy đpcm
2: Sửa đề: 7^6+7^5-7^4
=7^4(7^2+7-1)
=7^4*55 chia hết cho 55
3: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5\)
\(=3^{22}\cdot405⋮405\)
1: \(=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}\cdot14⋮14\)
1a S1=1+21+22+...+239
S1=(1+2+22+23).1+.........(1+2+22+23).236
S1=15.1+...........15.236 chia hết cho 15
1.
b) \(S2=125^7-25^9\)
\(=5^{21}-5^{18}=5^{18}\left(5^3-1\right)\)
\(=5^{18}.124⋮124\)
=> S2 \(⋮124\left(đpcm\right)\)
hc tốt
225+226+227
= 225.(1+2+22)
= 225.(1+2+4)
= 225.7 chia hết cho 7
=> 225+226+227 chia hết cho 7
=> đpcm