K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

y'=3x2-2(m+2)x+1-m.

\(\Delta\)'=(m+2)2-3(1-m)=m2+7m+1>0 (để hàm số có hai điểm cực trị x1, x2).

|x1-x2|=2 \(\Leftrightarrow\) (x1+x2)2-4x1x2=4 \(\Leftrightarrow\) \(\left[\dfrac{2\left(m+2\right)}{3}\right]^2-4\dfrac{1-m}{3}=4\) \(\Rightarrow\) m=-8 (nhận) hoặc m=1 (nhận).

NV
20 tháng 4 2019

Theo Viet: \(\left\{{}\begin{matrix}z_1+z_2=2i\\z_1z_2=-1-2i\end{matrix}\right.\)

\(\Rightarrow z_1^3+z_2^3=\left(z_1+z_2\right)\left(z_1^2+z_2^2-z_1z_2\right)=\left(z_1+z_2\right)\left(\left(z_1+z_2\right)^2-3z_1z_1\right)\)

\(=2i\left[\left(2i\right)^2-3\left(-1-2i\right)\right]=2i\left(6i-1\right)=-12-2i\)

AH
Akai Haruma
Giáo viên
23 tháng 6 2018

Lời giải:

Nếu $z_1,z_2,z_3$ là 3 nghiệm phức của pt \(2x^3-3x-2=0\) thì theo định lý Vi-et ta có:

\(\left\{\begin{matrix} z_1+z_2+z_3=0\\ z_1z_2z_3=1\end{matrix}\right.\)

Kết hợp hệ phương trình trên với hằng đẳng thức:

\(z_1^3+z_2^3+z_3^3=(z_1+z_2)^3-3z_1z_2(z_1+z_2)+z_3^3\)

\(=(-z_3)^3-3z_1z_2(-z_3)+z_3^3=3z_1z_2z_3=3\)

Đáp án B

AH
Akai Haruma
Giáo viên
3 tháng 3 2020

Lời giải:

TCĐ: $x=-1$

TCN: $y=2$

Do đó:

\(d(M_1,\text{TCĐ})=|x_1+1|; d(M_2, \text{TCĐ})=|x_2+1|\)

\(d(M_1,\text{TCN})=|y_1-2|=|\frac{2x_1-1}{x_1+1}-2|=\frac{3}{|x_1+1|}\)

\(d(M_2, \text{TCN})=|y_2-2|=\frac{3}{|x_2+1|}\)

Áp dụng BĐT Cô-si, tổng khoảng cách:

\(h=(|x_1+1|+\frac{3}{|x_1+1|})+(|x_2+1|+\frac{3}{|x_2+1|})\geq 2\sqrt{3}+2\sqrt{3}=4\sqrt{3}\)

Vậy $h_{\min}=4\sqrt{3}$ khi \(\left\{\begin{matrix} |x_1+1|^2=3\\ |x_2+1|^2=3\end{matrix}\right.; x_1\neq x_2\Rightarrow (x_1,x_2)=(\sqrt{3}-1, -\sqrt{3}-1)\)

\(\Rightarrow (y_1,y_2)=(2-\sqrt{3}, 2+\sqrt{3})\)

Do đó:

$P=x_1x_2+y_1y_2=-1$

1 tháng 4 2017

Phương trình: \(z^2+4z+5=0\)

có 2 nghiệm: \(\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

+) \(\left(1+z_1\right)^{100}=\left(\left(-1+i\right)^2\right)^{50}\\ =\left(-2i\right)^{50}=\left(\left(-2i\right)^2\right)^{25}=\left(-4\right)^{25}=-2^{50}\)

+) \(\left(1+z_2\right)^{100}=\left(\left(-1-i\right)^2\right)^{50}\\ =\left(2i\right)^{50}=\left(\left(2i\right)^2\right)^{25}=\left(-4\right)^{25}=-2^{50}\)

Vậy: \(w=-2^{50}-2^{50}=-2^{51}\)

1 tháng 4 2017

Hình như đáp án bạn viết sai :)))))))))

NV
2 tháng 5 2019

Bài 1:

\(y'=3\left(x+m\right)^2+3\left(x+n\right)^2-3x^2\)

\(y'=3\left(x^2+2mx+m^2\right)+3\left(x^2+2nx+n^2\right)-3x^2\)

\(y'=3\left(x^2+2\left(m+n\right)x+m^2+n^2\right)\)

Để hàm số đồng biến trên R \(\Leftrightarrow y'\ge0\) \(\forall x\in R\)

\(\Rightarrow\Delta'=\left(m+n\right)^2-\left(m^2+n^2\right)\le0\) \(\Rightarrow mn\le0\)

\(P=4\left(m+n\right)^2-\left(m+n\right)-8mn\ge4\left(m+n\right)^2-\left(m+n\right)\ge-\frac{1}{16}\)

Bài 2: Đề bài rất kì quặc

Mình nghĩ cách giải sẽ như sau: nhận thấy \(z=0\) ko phải nghiệm nên chia 2 vế cho \(z^3\):

\(z^3+2016z^2+2017z+2018+\frac{2017}{z}+\frac{2016}{z^2}+\frac{1}{z^3}=0\)

\(\Leftrightarrow z^3+\frac{1}{z^3}+2016\left(z^2+\frac{1}{z^2}\right)+2017\left(z+\frac{1}{z}\right)+2018=0\)

Đặt \(z+\frac{1}{z}=a\Rightarrow\left\{{}\begin{matrix}a^2=z^2+\frac{1}{z^2}+2\Rightarrow z^2+\frac{1}{z^2}=a^2-2\\a^3=z^3+\frac{1}{z^3}+3\left(z+\frac{1}{z}\right)\Rightarrow z^3+\frac{1}{z^3}=a^3-3a\end{matrix}\right.\)

\(\Rightarrow a^3-3a+2016\left(a^2-2\right)+2017a+2018=0\)

\(\Leftrightarrow a^3+2016a^2+2014a-2014=0\)

Đặt \(f\left(a\right)=a^3+2016a^2+2014a-2014\)

\(f\left(-2015\right)=1\) ; \(f\left(-2016\right)=...< 0\)

\(\Rightarrow f\left(-2015\right).f\left(-2016\right)< 0\Rightarrow\) phương trình luôn có ít nhất một nghiệm \(a_0\in\left(-2016;-2015\right)\)

Khi đó ta có: \(z+\frac{1}{z}=a_0\Rightarrow z^2-a_0z+1=0\)

\(\Delta=a_0^2-4>0\) do \(a_0\in\left(-2016;-2015\right)\) nên \(a_0^2>2015^2>4\)

\(\Rightarrow\) Phương trình đã cho có ít nhất 2 nghiệm thực nên ko thể có 6 nghiệm phức

\(\Rightarrow\) Đề bài sai :(

3 tháng 5 2019

Bài 2 mình dùng phương trình đối xứng ra được ko bạn ??

NV
16 tháng 11 2018

Đề như vậy hả bạn?

\(log^2x-logx.log_2\left(4x\right)+2log_2x=0\)

\(\Leftrightarrow log^2x-logx.\left(log_24+log_2x\right)+2log_2x=0\)

\(\Leftrightarrow log^2x-logx.\left(2+log_2x\right)+2log_2x=0\)

\(\Leftrightarrow log^2x-2logx-logx.log_2x+2log_2x=0\)

\(\Leftrightarrow logx\left(logx-2\right)-log_2x\left(logx-2\right)=0\)

\(\Leftrightarrow\left(logx-2\right)\left(logx-log_2x\right)=0\) \(\Rightarrow\left[{}\begin{matrix}logx=2\Rightarrow x=100\\logx-log_2x=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow logx-\dfrac{logx}{log2}=0\Rightarrow logx\left(1-\dfrac{1}{log2}\right)=0\Rightarrow logx=0\Rightarrow x=1\)

Vậy tổng các nghiệm là \(100+1=101\)