K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

25 tháng 12 2018

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

16 tháng 1 2019

Nhận xet: y bằng tổng 2 ân => y ≥ 0

\(y^2=x-1+4-x+2\sqrt{\left(x-1\right)\left(4-x\right)}=3+2\sqrt{\left(x-1\right)\left(4-x\right)}\)

\(2\sqrt{\left(x-1\right)\left(4-x\right)}\ge0\)

=> \(y^2\ge3\) mà y ≥ 0

=> y ≥ \(\sqrt{3}\). Dấu "=" xảy ra <=> x = 1 hoặc x = 4

Lại có: \(2\sqrt{\left(x-1\right)\left(4-x\right)}\le2.\dfrac{x-1+4-x}{2}=3\)

=> \(y^2\le6\)

Mà y ≥ 0

=> y ≤ \(\sqrt{6}\)

Dấu "=" xảy ra <=> x = \(\dfrac{5}{2}\)

16 tháng 1 2019

ĐKXĐ: \(1\le x\le4\)

-Min:

Với x > 0, Áp dụng BĐT :\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)

\(\Rightarrow y=\sqrt{x-1}+\sqrt{4-x}\ge\sqrt{3}\)

\(''=''\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

-Max:

\(y^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)^2\)\(=3+2\sqrt{\left(x-1\right)\left(4-x\right)}\)

\(y^2\le3+2.\dfrac{x-1+4-x}{2}=6\)

\(y\le\sqrt{6}\)

\(''=''\Leftrightarrow x=\dfrac{5}{2}\)

2 tháng 10 2017

mini của mày chịch nhau à hả cu

2 tháng 10 2017

phắn =="