Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10a+b chia hết cho 13
=> 40a +4b-49a chia hết cho 13
hay a+4b chí hết cho 13
a, a+ 4b chia hết 13 => 10 ( a+4b ) cũng chia hết cho 13
mà 10 (a + 4b) = 10a + 40b = 10a + b + 39b
mà 39b chia hết cho 13 => 10a + b chia hết cho 13.
b, ab - ba = 10a+b - (10b +a)= 9a - 9b = 9(a-b) = 3^2 ( a-b)
Để ab - ba là số chính phương thì a-b là số chính phương mà a;b là các chữ số nên a-b chỉ có thể = 1;4;9.
+ a-b = 1 ; ab nguyên tố=> ab =43
+ a - b = 4 => ab=70 thỏa mãn.
+ a - b = 9 => ab = 90 loại.
Vậy ab = 43 hoặc 73.
a, a+ 4b chia hết 13 => 10 ( a+4b ) cũng chia hết cho 13
mà 10 (a + 4b) = 10a + 40b = 10a + b + 39b mà 39b
chia hết cho 13 => 10a + b chia hết cho 13. b, ab - ba = 10a+b - (10b +a)= 9a - 9b = 9(a-b) = 3^2 ( a-b)
Để ab - ba là số chính phương thì a-b là số chính phương mà a;b là các chữ số nên a-b chỉ có thể = 1;4;9.
+ a-b = 1 ; ab nguyên tố=> ab =43
+ a - b = 4 => ab=70 thỏa mãn.
+ a - b = 9 => ab = 90 loại. Vậy ab = 43 hoặc 73.
a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2
tổng của chúng là :
a + a + 1 + a + 2
= (a + a + a) + (1 + 2)
= 3a + 3
= 3(a + 1) ⋮ 3 (đpcm)
b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2
=> tích của chúng chia hết chô 2 (đpcm)
c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)
aaa = a.111 = a.3.37 ⋮ 37 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= (10a + a) + (10b + b)
= 11a + 11b
= 11(a + b) ⋮ 11 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= a ( 10 + 1) + b(10+1)
= a.11 + b.11
= ( a + b ).11 \(⋮\)11
Vậy ab + ba \(⋮\)11
Hok tốt
b1: 3 số TNLT là n, n+1, n+2
tổng 3 số TNLT là: n+ n+1 + n +2=( n + n+ n)+(1+2)=3n+3=3.(n+1) chia hết cho 3 (đpcm)
phần b làm như trên nhé
vì 39 chia hết cho 13 suy ra 39a chia hết cho 13
mà a+4b chia hết cho 13 nên 39a+a+ab chia hết cho 13
suy ra 40a+4b chia hết cho 13 nên 4(10a+b) chia hết cho 13 (1)
vì 4 ko chia hết cho 13 nên kết hợp với (1) ta có 10a+b chia hết cho 13
k cho mik nha
a)
Goị 3 số chẵn liên tiếp đó lần lượt là 2k; 2k + 2; 2k + 4
Ta có: 2k + (2k + 2) + (2k + 4)
= 2k + 2k + 2 + 2k + 4
= 6k + 6
Vì 6k \(⋮\)6 ; 6 \(⋮\)6 => 2k + (2k + 2) + (2k + 4) \(⋮\)6 => Tổng 3 số chẵn liên tiếp chia hết cho 6 (dpcm)
b) ab + ba
= a0 + b + b0 + a
= (a0 + a) + (bo + b)
= aa + bb
Vì aa \(⋮\)11 ; bb \(⋮\)11 => aa + bb \(⋮\)11 => ab + ba \(⋮\)11 (dpcm)
c)
+> Vì a + 4b \(⋮\)13 => 10(a + 4b) \(⋮\)13
=> 10a + 40 b \(⋮\)13
=> 10a + b + 39b \(⋮\)13
Mà 39b \(⋮\)13 => 10a + b \(⋮\)13 (dpcm)
+> Vì 10a + b \(⋮\)13 => 4(10a + b) \(⋮\)13
=> 40a + 4b \(⋮\)13
=> 39a + a + 4b \(⋮\)13
Mà 39a \(⋮\)13 => a + 4b \(⋮\)13 (dpcm)