Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
a) n + 4 chia hết cho n
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n
=>n Є {1;2;4}
b/ 3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
\(\left(x-2\right)^{x+2}=\left(x-2\right)^{x+4}\)
\(\left(x-2\right)^{x+2}-\left(x-2\right)^{x+2}.\left(x-2\right)^2=0\)
\(\left(x-2\right)^{x+2}.\left[1-\left(x-2\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{x+2}=0\\1-\left(x-2\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\\left(x-2\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x-2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=3\end{cases}}\)
\(\Leftrightarrow a^2+8a+16-12=b^2\)
\(\Leftrightarrow\left(a+4\right)^2-b^2=12\)
\(\Leftrightarrow\left(a-b+4\right)\left(a+b+4\right)=12\)
đến đây tự full đi
cho cac chu so 0,2,4,6,8
co bao nhieu so co 3 chu so duoc viet boi cac chu so da cho
cac chu so co the lap lai o moi so
không tôn tại a vì 5 không chia hêt cho 2 còn 2 cái còn lại thì chia hêts cho 2