K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Ta có: \(\frac{3\left(2y-3\right)}{5}-7=\frac{2\left(y-4\right)}{3}+\frac{3y+13}{8}\)

\(\Leftrightarrow y=49\)

13 tháng 2 2020

Ta có phương trình ẩn y:

\(\frac{y+5}{y-1}-\frac{y+1}{y-3}=\frac{-8}{\left(y-1\right)\left(y-3\right)}\)\(\left(ĐK:y\ne1;y\ne3\right)\)

\(\Rightarrow\frac{\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)}{\left(y-1\right)\left(y-3\right)}=\frac{-8}{\left(y-1\right)\left(y-3\right)}\)

\(\Rightarrow\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)=-8\)

\(\Rightarrow\left(y^2+2y-15\right)-\left(y^2-1\right)=-8\)

\(\Rightarrow y^2+2y-15-y^2+1=-8\Leftrightarrow2y-14=-8\)

\(\Leftrightarrow2y=6\Leftrightarrow y=3\)(ktm)

Vậy không có y để \(\frac{y+5}{y-1}-\frac{y+1}{y-3}=\frac{-8}{\left(y-1\right)\left(y-3\right)}\)

\(\frac{y+5}{y-1}-\frac{y+1}{y-3}=\frac{-8}{\left(y-1\right)\left(y-3\right)}ĐKXĐ:y\ne1;3\)

\(\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)=-8\)

\(2y-14=-8\)

\(2y=6\)

\(y=3\)Theo ĐKXĐ => vô nghiệm 

6 tháng 12 2020

a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(=\left(\frac{1}{y-1}-\frac{y}{\left(1-y\right)\left(1+y+y^2\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\left(\frac{1}{y-1}+\frac{y\left(y^2+y+1\right)}{\left(y+1\right)^2\left(y^2+y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\left(\frac{1}{y-1}+\frac{y}{\left(y+1\right)^2}\right):\frac{1}{\left(y-1\right)\left(x+1\right)}\)

\(=\left(\frac{\left(y+1\right)^2+y\left(y-1\right)}{\left(y-1\right)\left(y+1\right)^2}\right).\frac{\left(y-1\right)\left(y+1\right)}{1}=\frac{y^2+2y+1+y^2-y}{y+1}=\frac{2y^2+y+1}{y+1}\)

b, Thay y = 1/2 ta có : 

\(\frac{2.\left(\frac{1}{2}\right)^2+\frac{1}{2}+1}{\frac{1}{2}+1}=\frac{\frac{1}{2}+\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}+\frac{2}{2}}=\frac{\frac{5}{2}}{\frac{3}{2}}=\frac{5}{12}\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2020

Lời giải:

Cần giải pt \(\frac{3(2y-3)}{5}=\frac{2(y-4)}{3}+\frac{3y+13}{8}+7\)

\(\Leftrightarrow \frac{6y-9}{5}=\frac{2y-8}{3}+\frac{3y+13}{8}+7\)

\(\Leftrightarrow \frac{6}{5}y-\frac{9}{5}=\frac{25}{24}y+\frac{143}{24}\)

\(\Leftrightarrow \frac{19}{120}y=\frac{931}{120}\Rightarrow 19y=931\Rightarrow y=49\)

Vậy.............

2 tháng 9 2017

X=2007 đúng 100%

24 tháng 7 2017

Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)

\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)

\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)

Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)

Vậy P=26