Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-2\(x^2+xy^2\) (\(xy^2\) là \(1xy^2\) )
=(\(-2+1\)) (\(x^2.x\)) . \(y^2\) (Ta nhân số theo số và phần biến theo phần biến)
= -1\(x^3y^2\)
Tại \(x\)= -1 ; \(y\) = - 4 ta có
-1.(-1)\(^3\).(-4)\(^2\)= -1.(-1). 16 = 16
Vậy tại x= -1 ; y = - 4 biểu thức -2\(x^2+xy^2\) là 16
\(-x^2y+2y^2\) (\(-x^2y\) là \(-1x^2y\))
= (-1+2). \(x^2.\left(y.y^2\right)\)
= 1\(x^2y^3\)
Tại x= 0 ; y = - 2 ta có
1.\(\left(0\right)^2.\left(-2\right)^3\)= 1. 0. -8 = 0 (0 nhân với số nào cũng bằng 0)
Vậy tại x= 0 ; y = - 2 biểu thức \(-x^2y+2y^2\) là 0
NHỮNG CHỖ NÀO CÓ IN ĐẬM VÀ NGHIÊNG LÀ KHÔNG GHI NHA
gọi thời gian đi từ A đến B là x(giờ) (x∈N*)
do vận tốc và thời gian là 2 đại lượng tỉ lệ nghịch
ta có: 30.x=40.7
=> x=4 (giờ)
a: EF=12cm
b: Xét ΔDEI vuông tại E và ΔDKI vuông tại K có
DI chung
\(\widehat{EDI}=\widehat{KDI}\)
Do đó:ΔDEI=ΔDKI
c: Ta có: ΔDEI=ΔDKI
nên DE=DK
hay ΔDEK cân tại D
d: ta có: ΔDEI=ΔDKI
nên IE=IK
mà DE=DK
nên DI là đường trung trực của EK
Gọi khối lượng giấy lớp 7A1 là a
khối lượng giấy lớp 7A2 là b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{b-a}{4-3}=23\)
Do đó: a=69; b=92
A = ( - 5)^32 . 20^43 / ( -8 )^29 . 125^25
= 5^32 . 20^43 / ( -8 )^29 . 125^25
= 5^32 . 20^43 / ( -8 )^29 . ( 5^3 )^25
= 5^32 . 20^43 / ( -8 )^29 . 5^75
= 20^43 / ( -8 )^29 . 5^43
= ( 4 . 5 )^43 / ( -8 )^29 . 5^43
= 4^43 . 5^43 / ( -8 )^29 . 5^43
= 4^43 / ( -8 )^29
= ( 2^2 )^43 / ( -2^3 )^29
= 2^86 / -2^87