Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm cosin góc giữa 2 đg thẳng denta 1 : 10x +5y -1=0 và denta 2 : x = 2+t ; y = 1-t
\(\Delta\left(1\right):10x+5y-1=0\)
\(\Delta\left(2\right):\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)
\(\Delta\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-\left(x-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-x+2\end{matrix}\right.\Leftrightarrow x+y-3=0\)
Ta có phương trình tổng quát của \(\Delta\left(2\right)\)là \(x+y-3=0\)
\(cos\left(\Delta\left(1\right),\Delta\left(2\right)\right)=\frac{\left|a_1.a_2+b_1.b_2\right|}{\sqrt{a_1^2+b_1^2}\sqrt{a_2^2+b_2^2}}\)
\(=\frac{\left|10+5\right|}{\sqrt{1+1}.\sqrt{100+25}}=\frac{15}{5\sqrt{10}}\)
Bấm SHIFT COS\(\left(\frac{15}{5\sqrt{10}}\right)\)=o'''
\(=18^o26'5,82''\)
bài 2,3,4 tương tự vậy.
2.
Vecto pháp tuyến của $\Delta_1$: \(\overrightarrow{n_1}=(1,2)\)
Vecto pháp tuyến của $\Delta_2$: \(\overrightarrow{n_2}=(1,-1)\)
Cosin góc giữa 2 đường thẳng
\(\cos (\Delta_1,\Delta_2)=\frac{|\overrightarrow{n_1}.\overrightarrow{n_2}|}{|\overrightarrow{n_1}|.|\overrightarrow{n_2}|}=\frac{|1.1+2(-1)|}{\sqrt{1^2+2^2}.\sqrt{1^2+(-1)^2}}=\frac{\sqrt{10}}{10}\)
Đáp án A
1.
Vecto pháp tuyến của $\Delta_1: (10,5)$
$\Rightarrow$ vecto chỉ phương \(\overrightarrow{u_1}=(-5,10)\)
Vecto chỉ phương của $\Delta_2$ \(\overrightarrow{u_2}=(1,-1)\)
Cosin góc giữa 2 đường thẳng:
\(\cos (\overrightarrow{u_1},\overrightarrow{u_2})=\frac{|\overrightarrow{u_1}.\overrightarrow{u_2}|}{|\overrightarrow{u_1}||\overrightarrow{u_2}|}=\frac{|-5.1+10(-1)|}{\sqrt{(-5)^2+10^2}.\sqrt{1^2+(-1)^2}}=\frac{3\sqrt{10}}{10}\)
33.
Đường thẳng d song song \(\Delta\) nên nhận \(\left(3;-4\right)\) là 1 vtpt
\(\Rightarrow\) Nhận \(\left(4;3\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=4t\\y=3t\end{matrix}\right.\)
41.
\(\Delta_1\) nhận \(\left(2;-3m\right)\) là 1 vtpt
\(\Delta_2\) nhận \(\left(m;4\right)\) là 1 vtpt
Để 2 đường thẳng cắt nhau
\(\Leftrightarrow2.4\ne-3m^2\Leftrightarrow m^2\ne-\frac{8}{3}\) (luôn đúng)
Vậy hai đường thẳng cắt nhau với mọi m
21.
\(\overrightarrow{AB}=\left(-2;2\right)=-2\left(1;-1\right)\) nên pt đường thẳng AB:
\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)
\(\overrightarrow{CD}=\left(-5;0\right)=-5\left(1;0\right)\) nên pt CD có dạng:
\(0\left(x-2\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)
Giao điểm 2 đường thẳng có tọa độ là nghiệm: \(\left\{{}\begin{matrix}x+y-3=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
31.
\(\Delta_1\) nhận \(\left(m+1;-1\right)\) là 1 vtcp
\(\Delta_2\) nhận \(\left(3;-4\right)\) là 1 vtpt
Để hai đường thẳng song song:
\(3\left(m+1\right)+4=0\Rightarrow m=-\frac{7}{3}\)
Bài 1:
\(\overrightarrow{u_{\Delta1}}=\left(2;-3\right)\Rightarrow\overrightarrow{n_{\Delta1}}=\left(3;2\right)\)
\(\Rightarrow\Delta_1:3\left(x-4\right)+2\left(y-1\right)=0\)
\(\Delta_1:3x+2y-14=0\)
\(\Rightarrow\Delta_1\equiv\Delta_2\)
Bài 6:
\(\frac{11}{12}\ne-\frac{12}{11}\Rightarrow\Delta_1\equiv\Delta_2\)
Bài 10:
\(\overrightarrow{AB}=\overrightarrow{u_{AB}}=\left(4;2\right)\)
Lấy \(O\left(0;0\right)\) là 1 điểm thuộc \(d_2\)
\(\Rightarrow d\left(d_1;d_2\right)=d\left(O;d_1\right)=\dfrac{\left|6.0-8.0-101\right|}{\sqrt{6^2+\left(-8\right)^2}}=\dfrac{101}{10}\)
\(\Delta_1:mx+y-19=0\Rightarrow\overrightarrow{n_1}\left(m;1\right)\)
\(\Delta_2:\left(m-1\right)x+\left(m+1\right)y-20=0\Rightarrow\overrightarrow{n_2}\left(m-1;m+1\right)\)
Để 2 đường thảng trên vuông góc thì : \(\overrightarrow{n_1}\perp\overrightarrow{n_2}\)
⇔m.(m-1)+(m+1) =0
⇔\(m^2-m+m+1=0\)
⇔ \(m^2+1=0\)
⇔ \(m^2=-1\)(vô lí )
Vậy không có giá trị m nào thỏa mãn để 2 đường thẳng trên vuông góc.
Chúc bn hok tốt nhé !
Chắc bạn ghi nhầm đề bài
Hai đường thẳng này ko song song nên không tồn tại khoảng cách giữa chúng