Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(24^{54}.54^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)
\(=2^{196}.3^{126}\)
Lại có :
\(72^{63}=\left(2^3.3^2\right)^{63}\)
\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}\)
\(=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}⋮2^{189}.3^{126}\Leftrightarrowđpcm\)
b) dễ lắm cậu tự làm nha , tách ra thành 2 vế rồi rút gọn lại
c) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.9-2^n.4+3^n.1-2^n.1\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n.2^{n-1}\right)\)
\(24^{54}.54^{24}.2^{10}=3^{54}.2^{162}.2^{24}.3^{72}.2^{10}=3^{126}.2^{196}\)
ta có: \(72^{63}=9^{63}.8^{63}=\left(3^2\right)^{63}.\left(2^3\right)^{63}=3^{72}.2^{108}\)
ta có: \(\frac{3^{126}.2^{196}}{3^{72}.2^{108}}=3^{54}.2^{88}\)
suy ra \(3^{126}.2^{196}\) chia hết cho \(3^{72}.2^{108}\)
suy ra \(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)
khi tách VT và VP ra TSNT ta có:
2454.5424.210=2196.3126
7263=2189..3126
nhận xét: 2196 chia hết cho 2189 3126chia hết cho 3126
suy ra ĐPCM
Ta có:
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)
\(=2^{196}.3^{126}\) (1)
Lại có:
\(72^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)(2)
Từ (1) và (2) ⇒ \(24^{54}.54^{24}.2^{10}⋮72^{63}\)
\(4.3^{2x}-2.9^x-54=0\) \(4.9^x-2.9^x-54=0\) \(2.9^x=54\) \(9^x=27\) x=1,5
77^6+7^5-7^4
=7^6.11^6+7^5-7^4
=7^4.7^2+7^4.7-7^4.1.11^6
=7^4.(7^2+7-1).11^6 chia hết cho 7
77^6+7^5-7^4 chia hết vì có số 7^4=7.7^3
Ta có 2454.5424.210=(23.3)54.(33.2)24.210=2162.354.372.224.210=2196.3126=(2189.3126).27=7263.27chia hết cho 7263(vì 7263chia hết cho 7263) => đpcm
\(24^{54}.54^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)
\(=2^{196}.3^{126}\)
Lại có :
\(72^{63}=\left(2^3.3^2\right)^{63}\)
\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}\)
\(=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}⋮2^{189}.3^{126}\)
\(\Leftrightarrowđpcm\)