Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)
\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)
a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)
\(=6x^2-2x-6x^2-2x+18x+6\)
=14x+6
b: Ta có: \(\left(2x-3\right)^2-\left(2x+1\right)\left(2x-1\right)+3\left(2x-3\right)\)
\(=4x^2-12x+9-4x^2+1+6x-9\)
\(=-6x+1\)
c: Ta có: \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2\)
=1
a) \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)=6x^2-2x-6x^2-2x+18x+6=14x+6\)
b) \(\left(2x-3\right)^2-\left(1+2x\right)\left(2x-1\right)+3\left(2x-3\right)=4x^2-12x+9-4x^2+1+6x-9=-6x+1\)
c) \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)
Tìm x:
1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)
\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)
Vậy x = 5
2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)
\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)
\(\Leftrightarrow-4x+15=-7\)
\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)
Vậy x = \(\frac{11}{2}\)
3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6
\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)
\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)
\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)
Vậy x = -1
4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3
\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)
\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)
\(\Leftrightarrow14x=0\Leftrightarrow x=0\)
Vậy x = 0
5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)
\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27
\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)
\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)
\(\Leftrightarrow-x^3=27\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
7. 3x (8x - 4) - 6x (4x - 3) = 30
\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)
\(\Leftrightarrow0=30\) ( vô lý)
Vậy pt vô nghiệm
8. 3x (5 - 2x) + 2x (3x - 5) = 20
\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)
\(\Leftrightarrow5x=20\Leftrightarrow x=4\)
Vậy x = 4
a. \(y=\frac{2}{2x+3}\in Z\)
\(\Rightarrow2x+3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{-5;-4;-2;-1\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{-2;-1\right\}\)
b. \(y=\frac{2x-1}{2x-3}=\frac{2x-3+2}{2x-3}=1+\frac{2}{2x-3}\)
Vì y thuộc Z nên 2 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{1;2;4;5\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{1;2\right\}\)
c. \(y=\frac{2x^2-1}{2x-3}=\frac{x\left(2x-3\right)+2x-3-x+2}{2x-3}=x+1-\frac{x+2}{2x-3}\)
Vì y thuộc Z nên x thuộc Z ; x + 2 / 2x - 3 thuộc Z
=> 2x + 4 / 2x - 3 thuộc Z
=> 2x - 3 + 7 / 2x - 3 thuộc Z
=> 7 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow2x\in\left\{-4;2;4;10\right\}\)
\(\Rightarrow x\in\left\{-2;1;2;5\right\}\) ( tm x thuộc Z )
d,e tương tự
f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)
\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)
\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)
\(-x^3=27\)
\(x=-3\)
a) 3x( 2x + 3) -(2x+5)(3x-2)=8
<=> 6x^2+9x-6x^2+4x-15x+10=8
<=> -2x+10=8
<=> -2x= 8-10 = -2
<=> x=1
b) (3x-4)(2x+1)-(6x+5)(x-3)=3
<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3
<=> -8x+11=3
<=> -8x= -8
<=> x=1
c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6
<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6
<=> 12x^2+ 26x-10-12x^2-18x+12=6
<=> 8x+2=6
<=> 8x=4
<=> x= 1/2
d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27
<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27
<=> 3x2y+3xy2-(x+y)3+y3=27
<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27
<=> -x3=27
<=> x= \(-\sqrt[3]{27}\)= -3
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)