Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A < \(\frac{2}{3^2-1^2}+\frac{2}{5^2-1^2}+...+\frac{2}{2019^2-1^2}\)
Tới đây ở mẫu số ta có công thức :
a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
<=> \(A< \frac{2}{\left(3-1\right)\left(3+1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+....+\frac{2}{\left(2019-1\right)\left(2019+1\right)}\)
\(=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\)
\(=\frac{1}{2}-\frac{1}{2020}=\frac{1009}{2020}< \frac{2019}{2020}=B\)
=> A < B
A = ( x - 2 )2 + 2019
( x- 2 )2 \(\ge0\forall x\)
=> ( x - 2)2 + 2019 \(\ge2019\)
=> A \(\ge2019\)
Dấu " = " xảy ra <=> ( x - 2)2 =0
<=> x = 2
b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình
c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020
( 3-x )100 \(\ge0\forall x\)
=> - ( 3-x)100 \(\le0\forall x\)
Tương tự : - 3.( y+2)100 \(\le0\forall y\)
=> C \(\le2020\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
@Shadow@ Đề câu b) đúng rồi đó
\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)
ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)
=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
1)3x4-5x3y+6x2-10xy+2
=(3x4-5x3y)+(6x2-10xy)+2
=x3(3x-5y)+2x(3x-5y)+2
=x3.0+2x.0+2
=0+0+2
=2
2) x5-2010x4+2010x3-2010x2+2010x-2020
=x5-(2009+1)x4+(2009+1)x3-(2009+1)x2+(2009+1)x-2009-11
=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-x-11
=x5-x5-x4+x4+x3-x3-x2+x2+x-x-11
=-11