Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2+2^2+...+2^{2016}\)
\(\Rightarrow2S=2.\left(2+2^2+...+2^{2016}\right)\)
\(\Rightarrow2S=2^2+2^3+...+2^{2017}\)
\(\Rightarrow2S-S=2^2+2^3+...+2^{2017}-\left(2+2^2+...+2^{2016}\right)\)
\(\Rightarrow S=2^2+2^3+...+2^{2017}-2-2^2-...-2^{2016}\)
\(\Rightarrow S=2^{2017-2}\)
a: \(3^x-2=2^7\)
\(\Leftrightarrow3^x=128+2=130\)(vô lý)
b: \(4^{x+1}=64\)
=>x+1=3
hay x=2
c: \(\left(5x+1\right)^2=1^{2016}=1\)
=>5x+1=1 hoặc 5x+1=-1
=>x=0 hoặc x=-2/5
d: \(2^{2\left(x-1\right)}=8\)
=>2(x-1)=3
=>x-1=3/2
hay x=5/2
1)Số các số hạng:
(2016-3):3+1=672 số
Tổng dãy số:
672x(2016+3):2=678384
Đặt A=2+22+23+24+...+22016
- A=(2+22)+(23+24)+...+(22015+22016)
A=2(1+3)+23(1+2)+...22015(1+2)
A=2.3+23.3+...+22015.3
A=3.(2+23+...+22015)chia hết cho 3
A=(2+22+23)+(24+25+26)+...+(22014+22015+22016)
A=2(1+2+22)+24(1+2+22)+...+22014(1+2+22)
A=2.7+24.7+...+22014.7
A=7.(2+24+...+22016)chia hết cho 7
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2015}+2^{2016}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2015}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2015}\right)⋮3\)
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
\(2016^0+1^{2016}\cdot\left(3^2\cdot3-2^4:8\right)\)
=1+1.(9.3-16:8)
=1+27-2
=26