Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2003^15 > 2000^15 = (2.10^3)^15 = 2^15.10^45
199^20 < 200^20 = (2.10^2)^20 = 2^20.10^40 =2^15.2^5.10^40 <2^15.10^40.100 =2^15.10^42
Vậy 199^20 < 2003^15
b) 3^99 > 11^21
vì
3^99 = (3³³)³
11^21 = (11^7)³
Còn số mũ giờ so sánh 3³³ và 11^7
3³³ = (3^4)^7 * 3^5
mà 3^4 > 11
==> 3^99 > 11^21
a, A =2 + 22 +2 3+ 2 4 + ..... + 2 19 + 2 20
A =(2 + 22 )+(2 3 + 2 4 )+ ..... + (2 19 + 2 20)
A =2 (1 + 2 )+2 3(1 + 2 )+ ..... +2 19 (1 + 2)
A =2 .3+2 3.3+ ..... +2 19 .3 = 3.(2 +2 3+ ..... +219)
Vì 3 chia hết cho 3 => 3.(2 +2 3+ ..... +219) chia hết cho 3=> A chia hết cho 3
A=(1+3^2)+(3^4+3^6)+...+(3^48+3^50)
A=1(1+3^2)+3^4(1+3^2)+...+3^48(1+3^2)
A=1.10+3^4.10+...+3^48.10
A=10(1+3^4+...+3^48)
A=2.5(1+3^4+...+3^48)
=>A chia hết cho 2 và 5 nên 8.A cũng chia hết cho 2 và 5
15 + ( x : 5 - 1 ) = 24
15 + ( x : 5 - 1 ) = 16
x : 5 - 1 = 16 - 15
x : 5 - 1 = 1
x : 5 = 1 + 1
x : 5 = 2
x = 10
Vậy x = 10
A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\)
A.3=\(3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\right)\)
A.3=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\)
A.3-A=\(\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\right)\)
A.2=\(1-\dfrac{1}{3^8}\)
A=\(\dfrac{1-\dfrac{1}{3^8}}{2}=\dfrac{3280}{6561}\)
ghi đề rõ đi bạn ơi
mik làm cho
hok tốt
3^ 4n + 2 - 2^ 4n + 2
= 2^ 4n +2 . 4n +2 -2^ 4n+2
= 4n +2
tk mk nha
_TRANG_
b)Ta có:
\(3^{99}>3^{93}=\left(3^3\right)^{21}=27^{21}\)
Vì \(27^{21}>11^{21}\) nên \(3^{99}>27^{21}>11^{21}\) hay \(3^{99}>11^{21}\)
a) Ta có:
19920 < 20020 = 20015.2005
200315 > 200015 = 20015.1015 = 20015.(103)5 = 20015.10005
Vì 19920 < 20015.2005 < 20015.10005 < 200315
=> 19920 < 200315
b) Ta có:
399 = (33)33 = 2733 > 1121
=> 399 > 1121