K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt 2017-x=a; 2019-x=b

\(\Leftrightarrow a+b=4036-2x\)

\(\Leftrightarrow-\left(a+b\right)=2x-4036\)

Phương trình trở thành: \(a^3+b^3-\left(a+b\right)^3=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)

\(\Leftrightarrow-3ab\left(a+b\right)=0\)

mà -3<0

nên \(ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(2017-x\right)\left(2019-x\right)\left(4036-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\4036-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)

Vậy: S={2017;2018;2019}

18 tháng 3 2021

Cho \(\left(2017-x\right)^3=x;\left(2019-x\right)^3=y;\left(2x-4036\right)^3=z\)

Ta có: \(x+y+z=0\)

\(=>x+y=-z\) \(=>\left(x+y\right)^3=-z^3\)

Ta có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3=-z^3-3xy\left(-z\right)+z^3=3xyz\)

Vì (2017-x)3 + (2019-x)3 + (2x-4036)3 =0 

=>\(3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

Gải phương trình được x=2017; x=2019; x=2018

Thực hiện phép tínha) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 ...
Đọc tiếp

Thực hiện phép tính
a) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)

b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)

c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)

d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)
e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 }}-\frac{\text{x}}{\text{x^2 - 9}}\)
g) \(\frac{\text{x + 2 }}{\text{x + 3 }}-\frac{\text{5 }}{\text{x^2 + x - 6 }}+\frac{\text{1}}{\text{2 - x}}\)
h) \(\frac{\text{4x }}{\text{x + 2 }}-\frac{\text{3x }}{\text{x - 2 }}+\frac{\text{12x}}{\text{x^2 - 4}}\)
i) \(\frac{\text{ x + 1 }}{\text{ x - 1 }}-\frac{\text{ x - 1 }}{\text{ x + 1 }}-\frac{\text{4}}{\text{1 - x^2}}\)
k) \(\frac{\text{ 3x + 21 }}{\text{ x^2 - 9 }}+\frac{\text{2 }}{\text{x + 3 }}-\frac{\text{3}}{\text{x - 3}}\)

 

0

đề bài là tìm x à bạn? đề có cho điều kiện ko vậy ạ? (ví dụ như x nguyên?)

\(\left(x-1\right)^3+\left(x^3-8\right).3x.\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right).\left[\left(x-1\right)^2+\left(x^3-8\right).3x\right]=0\)

TH1: \(x-1=0\Leftrightarrow x=1\)

TH2: \(\left(x-1\right)^2+\left(x^3-8\right).3x=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^3-8\right).3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x^3-8=0\\3x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

3 tháng 5 2016

a) 

(x2- 4 ) - ( x - 2 )( 3 - 2x ) = 0 

=> x-4 - ( 3x - 2x2 - 6 + 4x ) = 0 

=> x2 + 2x2 - 7x + 2 =0 

=> 3x2 - 7x +2 = 0 

=> x = 1/3 và x = 2

b)

2x3 + 6x2 = x+ 3x 

2x2(x+3) = x(x+3)

<=> x(x+3)(2x-1) = 0 

<=> x=0 x=-3 và x=1/2

3 tháng 5 2016

a)(x2 _4)–(x-2)(3-2x)=0

<=>3x^2-7x+2=0

=>(x-2)(3x-1)=0

=>x-2=0 hoặc 3x-1=0

=>x=2 hoặc x=1/3

b) 2x3+ 6x2 =x2+3x

=> 2x3+5x2-3x=0

<=>2x3+5x2-3x=x(x+3)(2x-1)

=>x(x+3)(2x-1)=0

=>x=0 hoặc x+3=0 hoặc 2x-1=0

=.x=0 hoặc -3 hoặc 1/2

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

3 tháng 10 2019

\(B=x^3+3x^2+3x^2y+3xy^2+y^3+3y^2+6xy+3x+3y+2019\)

\(=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2019\)

\(=\left[\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+1\right]+2018\)

\(=\left(x+y-1\right)^3+2018\)

\(x+y=101\)

\(B=\left(101-1\right)^3+2018=1002018\)

3 tháng 10 2019

Đang 3x2+3y2 sao lại ra -3(x+y)2 ?? Phải là +3(x2+y2) chứ :v Không nhớ hằng đẳng thức 1 và 3 à :v với cả 6xy đâu?