Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bài giải:
Gọi số cần tìm là aa
aa chia hết cho 2
=> a có tận cùng là 0;2;4;6;8 (1)
Mà a chia 5 dư 2 => a = 2 hoặc 7 (2)
Từ (1) và (2) => a = 2
=> aa = 22.
b) Tương tự bn nhé!
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
a/ Số chia cho 5 dư 1 thì tận cùng là 1 hoặc 6 nên số cần tìm có thể là 11 hoặc 66. Số cần tìm chia hết cho 3 nên số cần tìm là 66
b/ Câu b đề ra ít điều kiện nên quá rộng sẽ có nhiều đáp số
Số chia hết cho 2 và 5 thì tận cùng =0 (chữ số hàng đơn vị =0)
Số chia hết cho 132 khi đồng thời chia hết cho 3;4;11
Để số cần tìm chia hết cho 4 thì chữ số hàng chục = {0;2;4;6;8;}
Các chữ số còn lại phải đảm bảo tổng các chữ số chia hết cho 3 và tổng các chữ số ở vị trí chẵn - tổng các chữ số ở vị trí lẻ hoặc ngược lại đảm bảo chia hết cho 11