Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2:
a) Trước tiên ta chứng minh f đơn ánh. Thật vậy nếu f (n1) = f (n2) thì
f (f(n1) + m) = f (f(n2) + m)
→n1 + f(m + 2003) = n2 + f(m + 2003) → n1 = n2
b) Thay m = f(1) ta có
f (f(n) + f(1)) = n + f (f(1) + 2003)
= n + 1 + f(2003 + 2003)
= f (f(n + 1) + 2003)
Vì f đơn ánh nên f(n)+f(1) = f(n+1)+2003 hay f(n+1) = f(n)+f(1)−2003. Điều này dẫn đến
f(n + 1) − f(n) = f(1) − 2003, tức f(n) có dạng như một cấp số cộng, với công sai là f(1) − 2003,
số hạng đầu tiên là f(1). Vậy f(n) có dạng f(n) = f(1) + (n − 1) (f(1) − 2003), tức f(n) = an + b.
Thay vào quan hệ hàm ta được f(n) = n + 2003, ∀n ∈ Z
+.
\(A\cap B=\varnothing\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m+1< 0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m< -1\end{matrix}\right.\)
Ta có nên làm bánh mì sữa không, ngồi trong phòng mọc nấm mất... Nhưng mà hong có men, haizz, lười quá
Ta có:
\(\Delta=p^2-2p+1-4.2.\left(p+2018\right)=p^2-10p-16143\ge0\Leftrightarrow\left[{}\begin{matrix}p\le-122\\p\ge132\end{matrix}\right.\)
\(\left[{}\begin{matrix}x1=\dfrac{p-1+\sqrt{p^2-10p-16143}}{4}\\x2=\dfrac{p-1-\sqrt{p^2-10p-16143}}{4}\end{matrix}\right.\)(1)
Để pt trên có tất cả là nghiệm nguyên thì Δ là số chính phương
Giả sử Δ=k2
\(\Leftrightarrow p^2-10p-16143=k^2\Leftrightarrow\left(p-5\right)^2-k^2=16168\Leftrightarrow\left(p-5-k\right)\left(p-5+k\right)=16168\)Do p,k nguyên nên \(\left[{}\begin{matrix}\left\{{}\begin{matrix}p=138\\k=39\end{matrix}\right.\\\left\{{}\begin{matrix}p=142\\k=51\end{matrix}\right.\\\left\{{}\begin{matrix}p=-128\\k=-39\end{matrix}\right.\\\left\{{}\begin{matrix}p=-132\\k=-51\end{matrix}\right.\end{matrix}\right.\)
Thay p=138, p=142, p=-128,p=-132 vào (1) ta thấy chỉ có 1 nghiệm nguyên, nghiệm còn lại là số thập phân=> ko có p thỏa mãn
1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.
2 nha
^^
1+1= 2
Chúc bạn học tốt