Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: B
a sai vì trực tâm là giao điểm của ba đường cao, không phải ba đường phân giác.
b sai vì hai đường chéo của hình bình hành không bằng nhau.
c, d, e đúng.
Mệnh đề trên là mệnh đề đúng.
Phát biểu như sau : Tứ giác ABCD có hai hình chéo cắt nhau tại trung điểm mỗi đường là điều kiện đủ để tứ giắc ABCD là hình bình hành.
A B C D P M
a) \(\overrightarrow{MP}.\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{MA}+\overrightarrow{MD}\right).\left(\overrightarrow{BM}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}+\overrightarrow{MD}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}-\overrightarrow{MB}.\overrightarrow{MD}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(0+0\right)=0\) (vì \(AC\perp BD\) nên \(\overrightarrow{MA}.\overrightarrow{BM}=0;\overrightarrow{MD}.\overrightarrow{MC}=0\)).
Vậy \(\overrightarrow{MP}.\overrightarrow{BC}=0\) nên \(MP\perp BC\).
* Gọi M, N lần lượt là trung điểm của AB và CD
Khi đó, MN vuông AB,CD; IM=MA=MB, IN=ND=NC
IN=d(I, CD)= => IC=ID=
Đường tròn (C) tâm I, bán kính R=IC có phương trình:
* Tọa độ C,D là nghiệm của hệ 2 phương trình: và x-3y-3=0
=> y=1 or y=-1 Vì C có hoành độ dương nên C(6,1) và D(0,-1)
* S=45/2 <=> 1/2. MN.(AB+CD)=45/2
<=> MN(2IM+2IN)=45
<=> MN^2=45/2 => MN=
=> IM=MN-IN=
Mà AB//CD => =>
vói => B(3,5) và C(6,1)
Vậy BC: 4x+3y-27=0
2 đường chéo của hình thang
không cắt nhau tai trung điểm
học tốt
nhe
Không, ngay cả thang cân cũng không cắt nhau tại trung điểm.