Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là abcdef( có gạch trên đầu b nhé)
với đk a#0 abcdef khác nhau
1; a có 8 cách chọn
b có 7 cách chọn
c có 6 cách chọn
d có 5 cách chọn
e có có 4 cách chọn
f có 3 cách chọn
=> có 20160 số tmycbt
Chọn 2 số lẻ từ 5 chữ số lẻ: \(C_5^2\)
Chọn 3 chữ số chẵn từ 5 chữ số chẵn: \(C_5^3\)
Xếp 8 chữ số theo thứ tự bất kì: \(C_5^2.C_5^3.\dfrac{8!}{2!.2!.2!}\)
Chọn 3 chữ số chẵn từ 5 chữ số chẵn trong đó có mặt số 0: \(C_4^2\)
Xếp 8 chữ số (có mặt số 0) sao cho số 0 đứng đầu: \(C_5^2C_4^2.\dfrac{7!}{2!.2!}\)
Số số thỏa mãn: \(C_5^2C_5^2\dfrac{8!}{2!.2!.2!}-C_5^2C_4^2.\dfrac{7!}{2!.2!}=...\)
Đưa các chữ số của số tự nhiên cần lập vào các ô trống:
. | . | . | . | . | . | . | . |
TH1: Có chữ số 0:
Đưa 0 vào : \(C^2_7\) cách
Chọn và đưa 2 số chẵn còn lại vào : \(C^2_4C^2_6C^2_4\) cách
Chọn 2 chữ số lẻ : \(A^2_5\) cách
=>TH1 lập được \(C^2_7C^2_4C^2_6C^2_4A^2_5=226800\) số
TH2: Không có chữ số 0:
Chọn và đưa 3 số chẵn vào : \(C^3_4C^2_8C^2_6C^2_4\) cách
Chọn 2 chữ số lẻ : \(A^2_5\) cách
=>TH2 lập được \(C^3_4C^2_8C^2_6C^2_4A^2_5=201600\) số
Vậy có 226800 + 201600 = 428400 số
a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 3 chữ số chẵn có C35 cách
Sắp xếp 6 chữ số này có 6! cách
Vậy có C35 . C35 . 6! số
TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 2 chữ số chẵn có C24 cách
Sắp xếp 5 chữ số có 5! cách
Vậy có C35 . C24 . 5! số
Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ
Phương án 1: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó không có số 0.
+ Bước 1: Chọn 3 số lẻ, có cách.
+ Bước 2: Chọn 3 số chẵn, có cách.
+ Bước 3: Xếp thứ tự 6 chữ số vừa lấy theo hàng ngang, có 6! = 720 cách.
Theo quy tắc nhân thì số các số trong phương án này là: 10.4.720 = 28800 số.
Phương án 2: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó có số 0.
Tương tự như trên, số các số tự nhiên trong phương án này là: số.
Vậy số các số tự nhiên thỏa mãn yêu cầu là: 28800 + 36000 = 64800 số.
Chọn B.
\(\overline{abcde}\).
- TH1 : a là số chẵn ⇒ Giả sử b,c là số chẵn và d,e là số lẻ
+ Chọn số cho a có 4 cách (2 ; 4 ; 6 ; 8) : Lưu ý là chữ số đầu tiên của số có từ 2 chữ số trở nên không được là số 0
+ Chọn số cho b có 3 cách
+ Chọn số cho c có 2 cách
+ Chọn số cho d có 5 cách
+ Chọn số cho e có 4 cách
⇒ Nếu a là số chẵn thì sẽ có 4 . 3 . 2 . 5 . 4 = 480 số
- Nếu a là số lẻ, giả sử b là số lẻ và c,d,e là số chẵn
+ Chọn số cho a có 5 cách
+ Chọn số cho b có 4 cách
+ Chọn số cho c có 5 cách
+ Chọn số cho d có 4 cách
Chọn số cho e có 3 cách
Vậy khi a là số lẻ thì có 5 . 4 . 5 . 4 . 3 = 1200 (số)
Vậy rốt cuộc là có 1200 + 480 = 1680 (số)
Có bao nhiêu số tự nhiên có tính chất:
a. Là số chẵn và có hai chữ số (không nhất thiết khác nhau).
KQ: \(5\cdot9=45\) (số)
b. Là số lẻ và có hai chữ số (không nhất thiết khác nhau).
KQ: \(5\cdot9=45\) (số)
c. Là số lẻ và có hai chữ số khác nhau.
KQ: \(5\cdot8=40\) (số)
d. Là số chẵn và có hai chữ số khác nhau.
KQ: \(9+4\cdot8=41\) (số)
Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng a b c d e ¯ (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng 0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b,c}).
Suy ra, số các số tự nhiên thỏa đề ra là
Có nhiều số bn ơi
có tất cả số chẵn có 3 chữ số là:
(998-112):2=388
đáp số: 388