\(\Delta ABC\) nhọn, 2 đường cao BD, CE cắt nhau tại H. Gội B1, C1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

Do đó: ΔABD đồng dạng với ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\left(1\right)\)

Xét ΔAB1C có B1D là đường cao

nên \(AD\cdot AC=AB_1^2\left(2\right)\)

Xét ΔAC1B có C1E là đường cao

nên \(AC_1^2=AE\cdot AB\left(3\right)\)

Từ (2), (1) và (3) suy ra AB1=AC1

hay ΔAB1C1 cân tại A

28 tháng 7 2019

A B M C O O 1 2 O I E D N

a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1= ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB

Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).

b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI

Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB 

=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).

c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)

=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC

Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)

Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)

Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).

22 tháng 9 2018

Giải câu a thôi cũng được

Giúp mình đi, mai mình phải nộp bài rồi

23 tháng 9 2018

giờ hoc24 ít ng lắm =))

chờ đến sáng mai chắc chưa xong

30 tháng 5 2017

Theo đề bài thì ta có:

\(ah_a=bh_b=ch_c=2\)

Ta có:

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)

\(=\left(2+2+2\right)^2=36\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\) 

8 tháng 8 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [E, C] Đoạn thẳng n: Đoạn thẳng [P, Q] Đoạn thẳng p: Đoạn thẳng [P, A] Đoạn thẳng q: Đoạn thẳng [Q, A] Đoạn thẳng t_1: Đoạn thẳng [A, O] Đoạn thẳng a: Đoạn thẳng [A, I] O = (1.88, 2.28) O = (1.88, 2.28) O = (1.88, 2.28) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g

a) Ta thấy ngay tứ giác BEDC nội tiếp vì \(\widehat{BEC}=\widehat{BDC}=90^o\)

b) Do tứ giác BEDC nội tiếp nên \(\widehat{EDH}=\widehat{BCH}\)

Vậy thì \(\Delta EHD\sim\Delta BHC\left(g-g\right)\Rightarrow\frac{EH}{BH}=\frac{DH}{CH}\Rightarrow BH.DH=EH.CH\)

c) Do góc \(\widehat{EDH}=\widehat{BCH}\) nên \(\widehat{EDA}=\widehat{CBE}\) (Cùng phụ với hai góc trên)

Suy ra \(\widebat{AC}=\widebat{AP}+\widebat{QC}\)

Lại có \(\widebat{AC}=\widebat{AQ}+\widebat{QC}\Rightarrow\widebat{AP}=\widebat{AQ}\Rightarrow AP=AQ\)

(Liên hệ giữa dây và cung căng dây)

Vậy tam giác APQ cân tại A.

Ta thấy \(\widehat{AEQ}=\widebat{AQ}+\widebat{PB}=\widebat{AP}+\widebat{PB}=\widebat{AB}=\widehat{AQB}\)

Vậy \(\Delta AEQ\sim\Delta AQB\left(g-g\right)\Rightarrow\frac{AE}{AQ}=\frac{AQ}{AB}\Rightarrow AQ^2=AE.AB\Rightarrow AP^2=AE.AB\)

d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên \(AO⊥PQ\)

Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.

Khi đó \(\frac{S_1}{S_2}=\frac{\frac{1}{2}PQ.AK}{\frac{1}{2}BC.AI}=\frac{PQ}{2BC}\Rightarrow\frac{AK}{AI}=\frac{1}{2}\)

Lại có \(\Delta ABI\sim\Delta ADK\left(g-g\right)\Rightarrow\frac{AB}{AD}=\frac{AI}{AK}=\frac{1}{2}\)

Xét tam giác vuông ABD có \(\frac{AB}{AD}=\frac{1}{2}\Rightarrow\widehat{BAC}=60^o\Rightarrow\widebat{BC}=60^o\)

Như vậy, khi A thay đổi trên cung lớn BC  thì \(\widehat{BAC}=60^o\). Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :

\(BC=R\sqrt{3}\)

A B C O I R 30 O

a) Ta thấy ngay tứ giác BEDC nội tiếp vì ^BEC=^BDC=90o

b) Do tứ giác BEDC nội tiếp nên ^EDH=^BCH

Vậy thì ΔEHD∼ΔBHC(g−g)⇒EHBH =DHCH ⇒BH.DH=EH.CH

c) Do góc ^EDH=^BCH nên ^EDA=^CBE (Cùng phụ với hai góc trên)

Suy ra ⁀AC=⁀AP+⁀QC

Lại có ⁀AC=⁀AQ+⁀QC⇒⁀AP=⁀AQ⇒AP=AQ

(Liên hệ giữa dây và cung căng dây)

Vậy tam giác APQ cân tại A.

Ta thấy ^AEQ=⁀AQ+⁀PB=⁀AP+⁀PB=⁀AB=^AQB

Vậy ΔAEQ∼ΔAQB(g−g)⇒AEAQ =AQAB ⇒AQ2=AE.AB⇒AP2=AE.AB

d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên AO⊥PQ

Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.

Khi đó S1S2 =12 PQ.AK12 BC.AI =PQ2BC ⇒AKAI =12 

Lại có ΔABI∼ΔADK(g−g)⇒ABAD =AIAK =12 

Xét tam giác vuông ABD có ABAD =12 ⇒^BAC=60o⇒⁀BC=60o

Như vậy, khi A thay đổi trên cung lớn BC  thì ^BAC=60o. Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :

BC=R√3

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

31 tháng 10 2018

Akai Haruma giải giúp em câu a thôi được không ạ, em cảm ơn nhiều.

5 tháng 10 2019

tự vẽ hình nhé

AC2+BC2-AB2=AK2+KC2+BK2+KC2+2BK.CK-AK2-BK2

=2KC2+2BK.CK=2KC(KC+BK)

AB2+BC2-CA2=BK2+AK2+BK2+KC2+2BK.CK-AK2-KC2

2BK2+2BK.CK=2BK(BK+CK)

AC2+BC2-AB2/AB2+BC2-CA2=2KC(KC+BK)/2BK(BK+CK)
=KC/BK

12 tháng 3 2017

Xét tam giác ABC vuông tại A có AD vuông góc với BC

=> AB2B=DC.BC; AC2=DC.BC

tam giác ABD vuông tại D có DF vuông góc với AB =>BD2=BF.AB

Tương tự DC2=CE.AC

Ta có \(\dfrac{AC^2}{AB^2}\)=\(\dfrac{DC.BC}{DB.BC}\)=\(\dfrac{DC}{DB}\)

=> \(\dfrac{AC^4}{AB^4}\)= \(\dfrac{DC^2}{DB^2}\)=\(\dfrac{CE.AC}{BF.AB}\)

=>\(\dfrac{AC^3}{AB^3}\)=\(\dfrac{CE}{BF}\)

12 tháng 3 2017

2/ gọi E là giao của BH với AC; F là giao của CH với AB

=>BE vuông góc với AC; CF vuông góc với AB

Xét tam giác AC1B có C1F vuông góc với AB =>AC12=AF.AB (1)

Tương tự AB12=AE.AC (2)

C/m tam giác AEB đồng dạng với tam giác AFC (g.g)

=> \(\dfrac{AE}{AF}\)=\(\dfrac{AB}{AC}\) => AE.AC=AF.AB (3)

Từ (1);(2) và (3) => AB1=AC1

18 tháng 8 2018

A B C K M H

Với S1 = SABC và S2 = SABH . Ta có các công thức tính diện tích:

\(S_1=\frac{CK.AB}{2};\)  \(S_2=\frac{HK.AB}{2}\)

\(\Rightarrow S_1.S_2=\frac{AB^2.\left(CK.HK\right)}{4}\Rightarrow\sqrt{S_1.S_2}=\frac{AB.\sqrt{CK.HK}}{2}\)(*)

Dễ thấy: ^KBH = ^KCA (Do cùng phụ với ^BAC) => \(\Delta\)HKB ~ \(\Delta\)AKC (g.g)

\(\Rightarrow\frac{HK}{AK}=\frac{BK}{CK}\Rightarrow CK.HK=AK.BK\)

Lại có: \(\Delta\)AMB vuông ở M có đường cao MK  \(\Rightarrow AK.BK=MK^2\)(Hệ thức lg trg \(\Delta\)vuông)

Từ đó => \(CK.HK=MK^2\Leftrightarrow\sqrt{CK.HK}=MK\); thế vào (*) thì được:

\(\sqrt{S_1.S_2}=\frac{AB.MK}{2}=S_{AMB}=S\). Vậy có ĐPCM.