Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^3-6x^2+12x-8}\)
\(=\sqrt{\left(x-2\right)^3}\)
\(=\left|x-2\right|\cdot\sqrt{x-2}\)
\(B=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{1+2\sqrt{3}+3}-\sqrt{1-2\sqrt{3}+3}\)
\(=\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=|1+\sqrt{3}|-|1-\sqrt{3}|\)
\(=1+\sqrt{3}-\left(\sqrt{3}-1\right)\)
\(=1+\sqrt{3}-\sqrt{3}+1=2\)
\(M=\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)
ĐKXĐ:x\(\ge\)1
M=\(\sqrt{\dfrac{x-1}{x+2}}=\sqrt{\dfrac{x+2-3}{x+2}}=\sqrt{1-\dfrac{3}{x+2}}\)
Để M lớn nhất thì \(\dfrac{3}{x+2}\) phải bé nhất <=>x+2 lớn nhất(không tìm được)
=>không tồn tại GTLN của M
---câu thứ 2 đọc đề không hiểu---
2.ĐKXĐ:x>-1
\(P=\dfrac{x+3}{\sqrt{x+1}}=\dfrac{x+1+2}{\sqrt{x+1}}=\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\)
Áp dụng BĐT cosi cho 2 số dương
\(\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\ge2\sqrt{\dfrac{2\sqrt{x+1}}{\sqrt{x+1}}}=2\sqrt{2}\)
Dấu = xảy ra khi x+1=2<=>x=1
=>GTNN của P=2\(\sqrt{2}\)đạt tại x=1
PT: \(2\sqrt{3}-\sqrt{4+x}=0\) \(\left(x\ge-4\right)\)
\(\Leftrightarrow\sqrt{4+x}=2\sqrt{3}\)
\(\Leftrightarrow4+x=12\) \(\Leftrightarrow x=8\left(TM\right)\)
Vậy \(x=8\)