K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

a + b = 10

(a + b)2 = 102

a2 + b2 + 2ab = 100

52 + 2ab = 100

2ab = 100 - 52

2ab = 48

ab = 48 : 2

ab = 24

x + y = 2

(x + y)2 = 22

x2 + y2 + 2xy = 4

20 + 2xy = 4

2xy = 4 - 20

2xy = - 16

xy = - 16 : 2

xy = - 8

x3 + y3

= (x + y)3 - 3xy(x + y)

= 23 - 3 . (- 8) . 2

= 8 + 48

= 56

6 tháng 11 2016

a) ta có :(a+b)2=a2+b2+2ab

=> ab=\(\frac{\left(a+b\right)^2-a^2-b^2}{2}=\frac{10^2-52}{2}=24\)

b) tương tự như trên ta có : xy=-8

=> \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

=\(2.\left(20+8\right)=56\)

23 tháng 12 2016

1.xy(14x-21y+28xy) 

2. a)\(x^2-4\ne0\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)\(\frac{x^2-2x-2x+4}{x^2-4}=\frac{x\left(x-2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\) với đk (a)=> \(b=\frac{x-2}{x+2}=1-\frac{4}{x+2}\)

c) \(C=\frac{-3-2}{-3+2}=-\frac{5}{-1}=5\)

23 tháng 12 2016

1. \(14x^2y-21xy^2+28x^2y^2\)

\(=7xy\left(2x-3y+4xy\right)\)

2.a)Để phân thức được xác định thì \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow\orbr{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b) \(\frac{x^2-4x+4}{x^2-4}=\frac{x^2-2.x.2+2^2}{x^2-2^2}\)

\(=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

c)Thay x=-3 ta có:

\(\frac{-3-2}{-3+2}=\frac{-5}{-1}=5\)

10 tháng 12 2017

\(\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right].\frac{4x^2-4}{5}\)  \(ĐKXĐ:x\ne\pm1;\)

\(=\)\(\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x^2-1\right)}{5}\)

\(=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right]\)\(.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\left[\frac{x^2+2x+1+6-\left(x^2+2x-3\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\frac{10}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=4\)

18 tháng 7 2015

dễ         

13 tháng 8 2016

1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Dấu "=" xảy ra khi x = 13/2

Vậy Max P(x) = 8217/4 tại x = 13/2

2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)

3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)

Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)

 

6 tháng 12 2018

dấu ngang ngang là phần nha