Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}+\dfrac{x+3}{2018}+\dfrac{x+4}{2017}+4=0\)
⇔ \(\dfrac{x+1}{2020}+1+\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1+\dfrac{x+4}{2017}+1=0\)
\(\Leftrightarrow\) \(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}=0\)
⇔ \(\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)
\(Do\) \(\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)\ne0\)
⇒ \(x+2021=0\)
⇔ \(x=-2021\)
\(Vậy\) \(x=-2021\)
\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)
=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)
=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)
=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0
=>x+2022=0
=> x=-2022
thêm \(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2}\ne0\) nên nó z nha :Đ giải thích ấy
`<=>(x+1)/2021+1+(x+2)/2020+1+(x+3)/2019+1+(x+2028)/2-3=0`
`<=>(x+2022)/2021+(x+2022)/2020+(x+2022)/2019+(x+2022)/2=0`
`<=>(x+2022)(1/2021+1/2020+1/2019+1/2)=0`
`<=>x+2022=0`
`<=>x=-2022`
d, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+10=0\) (Vì \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\) ≠ 0)
\(\Leftrightarrow x=-10\)
Vậy x = -10 là nghiệm của phương trình.
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
Ta có: VT = \(\dfrac{x+1}{2021}\)+1 - (\(\dfrac{x+2}{2020}\)+1) = \(\dfrac{x+3}{2019}\)+1=VP
=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}-\dfrac{x+2022}{2019}=0\)
=>\(\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}\right)=0\)
=>x +2022 = 0=> x =-2022
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{x+4-x-1}{\left(x+1\right)\left(x+4\right)}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right).2019=6060\)
<=> x = - 0,208387929
P/s: Số lạ zậy?Đề sai ko
6060 nha bạn