Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x + 1)(x + 2)(x + 3) = x3 - 1
=> x3 + 6x2 + 11x + 6 - x3 + 1 = 0
=> 6x2 + 11x + 7 = 0
Vì 6x2 + 11x + 7 > 0 => vô nghiệm
Vậy \(x\in\phi\)
Ta có : (x - 1)2 + (x + 3)2 = 2(x - 2)(x + 1) + 38
<=> x2 - 2x + 1 + x2 + 6x + 9 = 2x2 - 2x - 4 + 38
<=> x2 - 2x + 1 + x2 + 6x + 9 - 2x2 + 2x + 4 - 14 = 24
<=> x2 + x2 - 2x2 - 2x + 2x + 6x + 1 + 9 + 4 - 14 = 24
<=> 6x = 24
=> x = 24 : 6
=> x = 4
\(\left(x-1\right)^2+\left(x+3\right)^2=2\left(x-2\right)\left(x+1\right)+38\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(x^2+6x+9\right)=2\left(x^2-x-2\right)+38\)
\(\Leftrightarrow2x^2+4x+10=2x^2-2x+34\)
\(\Leftrightarrow2x^2+4x-2x^2+2x=34-10\)
\(\Leftrightarrow6x=24\)
\(\Rightarrow x=4\)
(x+1)(x+2)(x+3)=x3-1
<=>x.(x+2)(x+3)+(x+2)(x+3)=x3-1
<=>(x2+2x)(x+3)+x.(x+3)+2.(x+3)=x3-1
<=>x2.(x+3)+2x.(x+3)+x2+3x+2x+6=x3-1
<=>x3+3x2+2x2+6x+x2+3x+2x+6=x3-1
<=>x3-x3+3x2+2x2+x2+6x+3x+2x+6+1=0
<=>6x2+17x+7=0
<=>6x2+3x+14x+7=0
<=>3x.(2x+1)+7.(2x+1)=0
<=>(2x+1)(3x+7)=0
<=>2x+1=0 hoặc 3x+7=0
<=>x=-1/2 hoặc x=-7/3
Vậy S={-1/2;-7/3}
2(3 -5x)=3(x+1)
=> 6 -10x= 3x +1
=> -3x-10x=1-6
=> -13x=-5
=> 13x=5
=> x =\(\frac{5}{13}\)
Vậy x=\(\frac{5}{13}\)
Chúc bạn học tốt
bổ sung đề là tìm x,y nguyên dương
b/\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\).Vai trò của x,y là bình đẳng nên có thể giả sử: \(x\ge y\)
Hiển nhiên ta có: \(\frac{1}{y}< \frac{1}{3}\Leftrightarrow y\ge4\) (vì x,y nguyên dương)
và\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}=\frac{2}{6}\le\frac{2}{y}\Rightarrow y\le6\)
Ta có: \(4\le y\le6\)
Đến đây bí,alibaba!
\(\frac{1}{x}+\frac{1}{x+3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2\left(x+3\right)}{2x\left(x+3\right)}+\frac{2x}{2x\left(x+3\right)}=\frac{x\left(x+3\right)}{2x\left(x+3\right)}\)
\(\Leftrightarrow2x+6+2x=x^2+3x\)
\(\Leftrightarrow x=3\)
\(\frac{1}{x}+\frac{1}{x+3}=\frac{1}{2}\)
\(\frac{1}{x+x+3}=\frac{1}{2}\)
x+x+3=2
2x=-1
x=-1/2