Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)
B) Tính M(x) - N (x) - P(x)
ok rồi giúp mình với nha
Bài 1:
a) Ta có: \(2x=5y.\)
=> \(\frac{x}{y}=\frac{5}{2}\)
=> \(\frac{x}{5}=\frac{y}{2}\) và \(x.y=90.\)
Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
Có: \(x.y=90\)
=> \(5k.2k=90\)
=> \(10k^2=90\)
=> \(k^2=90:10\)
=> \(k^2=9\)
=> \(k=\pm3.\)
TH1: \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)
TH2: \(k=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).5=-15\\y=\left(-3\right).2=-6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(15;6\right),\left(-15;-6\right).\)
e) Ta có: \(\frac{x}{y}=\frac{4}{5}.\)
=> \(\frac{x}{4}=\frac{y}{5}\) và \(x.y=20.\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
Có: \(x.y=20\)
=> \(4k.5k=20\)
=> \(20k^2=20\)
=> \(k^2=20:20\)
=> \(k^2=1\)
=> \(k=\pm1.\)
TH1: \(k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.5=5\end{matrix}\right.\)
TH2: \(k=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).4=-4\\y=\left(-1\right).5=-5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;5\right),\left(-4;-5\right).\)
Chúc bạn học tốt!
1.
a) \(5x.5x.5x=\left(5x\right)^3.\)
b) \(x^1.x^2.....x^{2006}=x^{\frac{\left(2006+1\right).2006}{2}=}x^{2013021}.\)
c) \(x^1.x^4.x^7.....x^{100}=x^{\frac{\left(100+1\right).\left(\frac{100-1}{3}+1\right)}{2}}=x^{1717}.\)
d) \(x^2.x^5.x^8.....x^{2003}=x^{\frac{\left(2003+2\right).\left(\frac{2003-2}{3}+1\right)}{2}}=x^{669670}.\)
2.
\(2^x+80=3^y\)
Với \(x>0\Rightarrow2^x\) chẵn
Và 80 chẵn
\(\Rightarrow2^x+80\) chẵn.
Mà \(3^y\) lẻ
\(\Rightarrow x< 0.\)
Mà \(x\in N\)
\(\Rightarrow x=0.\)
\(\Rightarrow2^0+80=3^y\)
\(\Rightarrow1+80=3^y\)
\(\Rightarrow3^y=81\)
\(\Rightarrow3^y=3^4\)
\(\Rightarrow y=4.\)
Vậy \(\left(x;y\right)=\left(0;4\right).\)
Chúc bạn học tốt!
1.viết tích dưới dạng lũy thừa
a.5x.5x.5x
=(5x)\(^3\)
b.x\(^1\) . x \(^2\).......x \(^{2006}\)
=x \(^{2013021}\)
c.x\(^1\).x \(^4\) .x \(^7\)......x \(^{100}\)
=x \(^{1717}\)
d.x \(^2\) .x \(^5\).x \(^8\).......x\(^{2003}\)
=x \(^{669670}\)