K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

1

B= 12/1.4.7 + 12/4.7.10 + 12/7.10.13 + ... + 12/54.57.60

=> 1/2B= 6/1.4.7 + 6/4.7.10 + 6/7.10.13 + ... + 6/54.57.60

=> 1/2B = 1/1.4 - 1/4.7 +1/4.7 - 1/7.10 +1/7.10 - 1/10.13 + ... + 1/54.57 - 1/57.60

=> 1/2B =1/1.4 - 1/57.60

=> 1/2B = 1/4 - 1/3420

=> 1/2B = 427/1710

=> B = 427/1710 . 2

=> B = 427/855

3 tháng 4 2019

2

A= 1+ 1/22 + 1/32 +...+1/1002

  =1+ 1/2.2 + 1/3.3 +...+ 1/100.100

=> A< 1+ 1/1.2 + 1/2.3 +...+ 1/99.100

   = 1+ 1 - 1/2 +1/2 - 1/3 +...+1/99 - 1/100

   = 2- 1/100 < 2

Vậy A < 2

8 tháng 4 2018

BT 7 : 

\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}\)

\(P=\frac{12}{6}\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+\frac{6}{7.10.13}+...+\frac{6}{54.57.60}\right)\)

\(P=2\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-\frac{1}{10.13}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)

\(P=2\left(\frac{1}{1.4}-\frac{1}{57.60}\right)\)

\(P=2\left(\frac{1}{4}-\frac{1}{3420}\right)\)

\(P=\frac{1}{2}-\frac{1}{1710}< \frac{1}{2}\)

Vậy \(P< \frac{1}{2}\)

Chúc bạn học tốt ~ 

26 tháng 4 2016

a) ta có :1/5^2<1/4.5=1/4-1/5

1/6^2<1/5.6=1/5-1/6

.................

1/100^2<1/99.100=1/99-1/100

=>1/5^2+1/6^2+1/7^2+......+1/100^2 <1/4-1/100=6/25<1/4(1)

ta lại có:1/5^2>1/5.6=1/5-1/6

1/6^2>1/6.7=1/6-1/7

.................

1/100^2>1/100.101=1/100-1/101

=>1/5^2+1/6^2+1/7^2+......+1/100^2>1/5-1/101=96/505>1/6(2)

từ (1)(2) suy ra 1/6<1/5^2+1/6^2+1/7^2+......+1/100^2 < 1/4

26 tháng 4 2016

b)ta có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)>(1/20+1/20+...+1/20)(10 phân số 1/20)+(1/30+1/30+...+1/30)(10 phân số 1/30)+(1/40+1/40+...+1/40)(10 phân số 1/40)+(1/50+1/50+...+1/50)(10 phân số 1/50)+(1/60+1/60+...+1/60)(10 phân số 1/60)=1/2+1/3+1/4+1/5+1/6=29/20>4/3(1)

ta lại có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)<(1/11+1/11+...+1/11)(10 phân số 1/11)+(1/21+1/21+...+1/21)(10 phân số 1/21)+(1/31+1/31+...+1/31)(10 phân số 1/31)+(1/41+1/41+...+1/41)(10 phân số 1/41)+(1/51+1/51+...+1/51)(10 phân số 1/51)+(1/61+1/61+...+1/61)(10phân số 1/61)  =10/11+10/21+10/31+10/41+10/51+10/61=2,311777327<5/2(2)

từ (1)(2)=>4/3<1/11+1/12+....+1/70<5/2

6 tháng 3 2016

=2.(6/1.4.7 + 6/4.7.10 + 6/7.10.13 + ... + 6/54.57.60)

=2.(1/1.4-1/4.7+1/4.7-1/7.10+1/7.10-1/10.13+...+1/54.57-1/57.60)

=2(1.4-1/57.60)

TỰ TÍNH

3 tháng 3 2017

Bài 1:

\(\dfrac{5}{x} - \dfrac{y}{3} =\dfrac{1}{6}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{y}{3}=\dfrac{5}{x}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow1+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow x.\left(1+2y\right)=30\)

\(2y\) chẵn nên \(1+2y\) lẻ

\(\Rightarrow1+2y\in\left\{\pm1;\pm3;\pm5;\pm30\right\}\)

\(\Rightarrow x\in\left\{\pm10;\pm30;\pm6;\pm2\right\}\)

3 tháng 3 2017

Bài 2:

\(\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{\left(2n-2\right).2n}\)

\(=\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{\left(2n-2\right).2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+...+\dfrac{1}{2n-2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\dfrac{1}{4}-\dfrac{1}{2n.2}< \dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(đpcm\right)\)

2 tháng 3 2017

Ta quy đồng tử để có cùng tử là 3 :  

\(\frac{1}{7}=\frac{3}{21}\)

\(\frac{1}{8}=\frac{3}{24}\)

=>\(\frac{3}{21}< x< \frac{3}{24}\)

Nên      \(x=\frac{3}{22};\frac{3}{23}\)

Vậy tổng các phân số lớn hơn \(\frac{1}{7}\)và nhỏ hơn \(\frac{1}{8}\)là \(\frac{135}{506}\)

k mình nha các bạn và mình chúc các bạn học giỏi nha

2 tháng 3 2017

còn bài 2)