Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
1.
\(DK:x\ge2\)
\(\Leftrightarrow\left(3\sqrt{x-2}-3\right)+\left(3-\sqrt{x+6}\right)-\left(2x-6\right)=0\)
\(\Leftrightarrow\frac{3\left(x-3\right)}{\sqrt{x-2}+3}-\frac{x-3}{3+\sqrt{x+6}}-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(1\right)\\\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2=0\left(2\right)\end{cases}}\)
PT(2) khac khong voi moi \(x\ge2\)
Vay nghiem cua PT la \(x=3\)
\(x^3+2x=y^2-2009\)
\(\Leftrightarrow x^3-x=y^2-3x-2009\)
\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)=y^2-3x-2009\)
Dễ thấy VT chia hết cho 3 nên VP chia hết cho 3
Suy ra \(y^2\) chia 3 dư 2 vì 2009 chia 3 dư 2 và 3x chia hết cho 3 ( vô lý vì số chính phương ko chia 3 dư 2 )
Vậy pt vô nghiệm
5.
\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2=\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow VT\le\frac{ab}{ab\left(a^2+b^2\right)+ab}+\frac{bc}{bc\left(b^2+c^2\right)+bc}+\frac{ca}{ca\left(c^2+a^2\right)+ca}\)
\(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\)
Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
\(\Rightarrow VT\le\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
\(VT\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{zx\left(x+z\right)+xyz}\)
\(VT\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
2. Đề bài bạn viết thiếu thì phải
3. a/
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2+5x+1}=a\\\sqrt{4x^2-4x+4}=b\end{matrix}\right.\)
\(\Rightarrow a-b=a^2-b^2\Leftrightarrow a-b=\left(a-b\right)\left(a+b\right)\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)
- Với \(a=b\Rightarrow9x-3=0\Rightarrow x=...\)
- Với \(a+b=1\Rightarrow\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)
\(\Leftrightarrow\sqrt{4x^2+5x+1}+\sqrt{\left(2x-1\right)^2+3}=1\)
\(VT\ge\sqrt{3}>1\Rightarrow\) pt vô nghiệm
b/ ĐKXĐ: ...
\(2x+y+2\sqrt{2x+y}-3=0\)
\(\Leftrightarrow\left(\sqrt{2x+y}-1\right)\left(\sqrt{2x+y}+3\right)=0\)
\(\Leftrightarrow\sqrt{2x+y}=1\Rightarrow y=1-2x\)
Thay vào pt dưới:
\(x^2-2x\left(1-2x\right)=\left(1-2x\right)^2+2\)
\(\Leftrightarrow...\) bạn tự giải
4. Ta có: \(a+b+c=6abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\Rightarrow xy+yz+zx=6\)
Lại có: \(\frac{bc}{a^3\left(c+2b\right)}=\frac{1}{a^3\frac{c+2b}{bc}}=\frac{\frac{1}{a^3}}{\frac{1}{b}+\frac{2}{c}}=\frac{x^3}{y+2z}\)
Tương tự suy ra:
\(S=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}\ge\frac{xy+yz+zx}{3}=2\)
Dấu = xảy ra khi \(x=y=z=\sqrt{2}\Rightarrow a=b=c=\frac{1}{\sqrt{2}}\)
1) đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{y-4}=b\left(b\ge0;\right)\)
M = \(\frac{a}{a^2+1}+\frac{b}{b^2+4}\); a2 +1 \(\ge2a;b^2+4\ge4b\)=> M \(\le\frac{a}{2a}+\frac{b}{4b}=\frac{3}{4}\)
M đạt GTLN khi a=1, b=2 hay x=2; y= 8
2) <=> (x-y)2 + (x+2)2 =8 => (x+2)2\(\le8< =>\left|x+2\right|\le\sqrt{8}\approx2< =>-2\le x+2\le2< =>\)\(-4\le x\le0\)
x=-4 => (y+4)2 =4 <=> y = -2;y = -6
x=-3 => (y+3)2 = 7 (vô nghiệm); x=-1 => (y+1)2 =7 (vô nghiệm)
x=0 => y2 = 4 => y =2; =-2
vậy có các nghiệm (x;y) = (-4;-2); (-4;-6); (0;-2); (0;2)
3) \(\frac{x^2}{y^2}+\frac{y^2}{z^2}\ge2\frac{x}{z}\left(a^2+b^2\ge2ab\right)\); tương tự với các số còn lại ta được điều phải chứng minh
3) sửa lại
áp dụng a2+b2+c2 \(\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{3}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)(vì \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{yzx}}=3\))
dấu '=' khi x=y=z
3. \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
\(x^2\left(2x^2+\frac{1}{x^2}+\frac{y^2}{4}\right)=4x^2\)
\(2x^4+1+\frac{x^2y^2}{4}=4x^2\)
\(\frac{x^2y^2}{4}=4x^2-2x^4-1\)
\(x^2y^2=16x^2-8x^4-4=-8\left(x^4-2x^2+1\right)+4=-8\left(x^2-1\right)^2\le4\)
\(xy\le2\) do đó xy min =2
<=> x=-1,y=-2
x=1 y=2
x=1 y=-2
x=-1 y=2