Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK
Xét \(\Delta AMN\)và \(\Delta KMB\)có\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)
\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)
\(\Rightarrow AN=BK=AM\)
mà \(AB>AM\Rightarrow AB>BK\)
\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)
\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)
A B C M N D
Trên tia đồi của tia MA lấy điểm D sao cho: MA=MD
Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)
mặt khác:
\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)
tu ve hinh :
a, xet tamgiac MBA va tamgiac MDC co :
goc BMA = goc DMC (doi dinh)
BM = CM do M la trung diem cua BC (GT)
MA = MD (GT)
=> tamgiac MBA = tamgiac MDC (c - g - c)
=> AB = DC (dn)
tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt
=> AB // CD (dh)
b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)
=> AC | DC (dl) => tamgiac ACD vuong tai C (dn)
tamgiac MBA = tamgiac MDC => AB = CD (dn)
goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C
xet tamgiac ACB va tamgiac CAD co AC chung
=> tamgiac ACB = tamgiac CAD (2cgv)
=> BC = AD (dn)
M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)
=> AM = BC/2
1.a, A B C O E D 1 1 1 2 2 2
Vi:\(\Delta ABC\)co \(\widehat{A}=60\)do nen \(\Delta ABC\)la tam giac deu(dinh nghia)
\(\Rightarrow\widehat{ABC}=\widehat{BCA}=60\)do(Dinh ly Py-ta-go)
Ma BD,CE lan luot la phan giac cua \(\widehat{ABC}\)va\(\widehat{ACB}\)nen \(\widehat{B_1}=\widehat{C_1}=\widehat{B_2}=\widehat{C_2}\)
\(\Delta BOC\)co :\(\widehat{B_2}=\widehat{C_2}\)
\(\Rightarrow\Delta OBC\)la tam giac can( tinh chat)
\(\Rightarrow OB=OC\left(dinhnghia\right)\)
xet \(\Delta EOB\)va \(\Delta DOC\)co :
\(\widehat{E_1}=\widehat{C_1}\)
\(\widehat{O_1}=\widehat{O_2}\)(doi dinh)
OB\(=\)OC(c/m tren)
\(\Rightarrow\Delta OEB=\Delta ODC\left(g.c.g\right)\)
\(\Rightarrow OE=OD\)(2 canh tuong ung)
\(\Rightarrow\Delta EOD\)la tam giac can tai O (dpcm)
a. Theo định lí Pitago:
Ta có: AB2 + AC2 = BC2
42 + AC2 = 52
16 + AC2 = 25
AC2 = 25 - 16
AC2 = 9
AC2 = 33
=> AC = 3 (cm)
1a\(\left(-\frac{3}{4}\right)^4\cdot\left(-\frac{4}{3}\right)^2+\frac{7}{16}\)
\(=\left(-\frac{3}{4}\right)^2+\frac{7}{16}\)
\(=\frac{9}{16}+\frac{7}{16}\)
=1
chị giúp em hai bài cuối đi