Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
a) (x + 2) . (x + 3) - (x - 2) . (x + 5) = 6
=> (x . x + 3x + 2x + 2 . 3) - (x . x + 5x - 2x - 2 . 5) = 6
=> (x2 + 5x + 6) - (x2 + 3x - 10) = 6
=> x2 + 5x + 6 - x2 - 3x + 10 = 6
=> 2x +16 = 6 => 2x = -10 => x = -5
b) (3x + 2) . (2x + 9) - (x + 2) . (6x + 1) = (x + 1) - (x - 6)
=> (3x . 2x + 3x . 9 + 2 . 2x + 2 . 9) - (x . 6x + 1x + 2 . 6x + 2 .1) = x + 1 - x + 6
=> (6x2 + 31x + 18) - (6x2 + 13x + 2) = 7
=> 6x2 + 31x + 18 - 6x2 - 13x - 2 = 7
=> 18x + 16 = 7 => 18x = 9 => x = 0,5
c) 3 . (2x - 1) . (3x - 1) - (2x - 3) . (9x - 1) = 0
=> 3(2x . 3x - 2x -3x + 1) - (2x . 9x - 2x -3 . 9x + 3) = 0
=> 3(6x2 - 5x +1) - (18x2 - 29x + 3) = 0
=> (18x2 -15x + 1) -(18x2 - 29x +3) = 0
=> 18x2 - 15x +1 -18x2 + 29x - 3 = 0
=> 14x = 0 => x = 0
a)(x+2)(x+3)-(x-2)(x+5)=6
x(x+3)+2(x+3)-x(x+5)+2(x+5)=6
x2+3x+2x+6-x2-5x+2x+10=6
(x2-x2)+(3x+2x-5x+2x)+(10+6)=6
2x+16=6
2x=6-16
2x=-10
x=-10/2
x=-5. Vậy x=-5
b)3x(2x+9)+2(2x+9)-x(6x+1)-2(6x+1)=x+1-x+6
6x2+27x+4x+18-6x2-x-12x-2=7
(6x2-6x2)+(27x+4x-x-12x)+(18-2)=7
18x+16=7
18x=7-16
x=-9/18=-1/2. Vậy x=-1/2
c)[3(3x-1)](2x-1)-(2x-3)(9x-1)=0
(9x-3)(2x-1)-(2x-3)(9x-1)=0
9x(2x-1)-3(2x-1)-2x(9x-1)+3(9x-1)=0
18x2-9x-6x+3-18x2+2x+27x-3=0
(18x2-18x2)+(27x+2x-6x-9x)+(3-3)=0
14x=0
x=0/14
x=0. Vậy x=0
a) (x + 2) . (x + 3) - (x - 2) . (x + 5) = 6 => (x . x + 3x + 2x + 2 . 3) - (x . x + 5x - 2x - 2 . 5) = 6
=> (x2 + 5x + 6) - (x2 + 3x - 10) = 6
=> x2 + 5x + 6 - x2 - 3x + 10 = 6
=> 2x +16 = 6 => 2x = -10 => x = -5
b) (3x + 2) . (2x + 9) - (x + 2) . (6x + 1) = (x + 1) - (x - 6)
=> (3x . 2x + 3x . 9 + 2 . 2x + 2 . 9) - (x . 6x + 1x + 2 . 6x + 2 .1) = x + 1 - x + 6
=> (6x2 + 31x + 18) - (6x2 + 13x + 2) = 7
=> 6x2 + 31x + 18 - 6x2 - 13x - 2 = 7
=> 18x + 16 = 7 => 18x = -9 => x = -0,5
c) 3 . (2x - 1) . (3x - 1) - (2x - 3) . (9x - 1) = 0
=> 3(2x . 3x - 2x - 3x + 1) - (2x . 9x - 2x - 3. 9x + 3) = 0
=> 3(6x2 - 5x + 1) - (18x2 - 29x + 3) = 0
=> 18x2 - 15x + 3 - 18x2 + 29x -3 = 0
=> 14x = 0 => x = 0.
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
a) \(x\left(2x-1\right)-6x+3=0\)
\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
b) \(x^2\left(x+1\right)-9x-9=0\)
\(\Leftrightarrow x^2\left(x+1\right)-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm\sqrt{9}=\pm3\end{cases}}\)
a) x(2x - 1) - 6x + 3 = 0
=> x(2x - 1) - 3(2x - 1) = 0
=> (x - 3)(2x - 1) = 0
=> \(\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
b) x2(x + 1) - 9(x + 1) = 0
=> (x2 - 9)(x + 1) = 0
=> \(\orbr{\begin{cases}x^2-9=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm3\\x=-1\end{cases}}\)