Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(a^3+b^3+c^3-3abc\)
\(=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2+c^3-3abc\)
\(=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-3ab.\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left[\left(a+b\right)^2-c.\left(a+b\right)+c^2\right]-3ab.\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right).\left(a^2+b^2+c^2-bc-ab-ca\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right).\left(a^2+b^2+c^2-bc-ab-ca\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\RightarrowĐpcm.\)
2. Dễ rồi.
3.
\(A=2.\left(x-y\right).\left(x^2+xy+y^2\right)-3.\left(x^2+2xy+y^2\right)\)
\(A=4.\left(x^2+xy+y^2\right)-3x^2-6xy-3y^2\)
\(A=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)
\(A=x^2-2xy+y^2\)
\(A=\left(x-y\right)^2\)
Thay \(x-y=2\) vào ta có:
\(A=\left(x-y\right)^2\)\(=2^2=4\)
4. \(A=x^2-3x+5\)
\(A=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
\(\Rightarrow x-\dfrac{3}{2}=0\)
\(\Rightarrow x=\dfrac{-3}{2}\)
\(\Rightarrow Min_A=\dfrac{11}{4}\Leftrightarrow x=\dfrac{-3}{2}\)
\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(B=4x^2-4x+1+x^2+4x+4\)
\(B=5x^2+5\)
Ta có: \(5x^2\ge0\)
\(\Rightarrow5x^2+5\ge0\)
\(\Rightarrow Min_B=5\Leftrightarrow x=0\)
Bài 1:
a: \(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
b: \(=xy\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(xy-1\right)\)
c: \(=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
d: \(=x\left(x+y\right)+\left(x+y\right)\left(x-y\right)=\left(x+y\right)\left(2x-y\right)\)
e: \(=5xy\left(x-2y^2\right)\)
g: \(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
h: \(=\left(x+2y\right)^2-16=\left(x+2y+4\right)\left(x+2y-4\right)\)
k: \(=2x^2-8x+3x-12=\left(x-4\right)\left(2x+3\right)\)
\(1a,P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right).\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24=0\)
\(b,Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6=-8\)
bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu
2)
a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400
b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000
c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000
4)
a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x
b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x
bài 2 nè
a+b+c = 0
=>(a+b+c)^3 = 0
a^3 + b^3 + c^3 + 3(a+b)(b+c)(a+c) = 0
vì a+b = -c
a+c = -b
b+c = -a
thay vào => a^3 + b^3 + c^3 - 3abc = 0
=> a^3 + b^3 + c^3 = 3abc
\(B=-x\left(x^2+4x+4\right)+4x^2+4x+1+x^3+1-1\)
\(=-x^3-4x^2-4x+4x^2+4x+1+x^3\)
\(=1\)
Vậy giá trị B luôn bằng 1 với mọi x (B ko phụ thuộc vào x)