Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- 2(x+5)(x-5)-(x+2)(2x-3)+x(x^2-8)=(x+1)(x^2-x+1)
<=> 2(x^2-25) - 2x^2+3x-4x+6 + x^3-8x = x^3+1
=>2x^2-50 - 2x^2 -9x+6+x^3-x^3-1 = 0
<=>-9x - 45 =0
<=>-9x=45
<=>x=-5
Còn phần b và c bạn cứ khai triển ra,mình phải đi học nên không có thời gian giải cho bạn
Tìm x biết :
a) 3(5/3x-7)-2(1.5x+6)-(5-x)(x+4)=80+x^2
b) 4/5x^2(x/3-1/2)-(1/5x-2/3)(4x^2/3+1)=22/45x^2
`Answer:`
\(3\left(\frac{5}{3}x-7\right)-2\left(1.5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\)
\(\Leftrightarrow3\left(\frac{5x}{3}-7\right)-2\left(5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\)
\(\Leftrightarrow5x-21-10x-12-5x-20+x^2+4x=80+x^2\)
\(\Leftrightarrow5x-21-10x-12-5x-20+4x=80\)
\(\Leftrightarrow-6x-53=80\)
\(\Leftrightarrow-6x=133\)
\(\Leftrightarrow x=-\frac{133}{6}\)
\(\frac{4}{5}x^2\left(\frac{x}{3}-\frac{1}{2}\right)-\left(\frac{1}{5}x-\frac{2}{3}\right)\left(4\frac{x^2}{3}+1\right)=\frac{22}{45}x^2\)
\(\Leftrightarrow36x^2\left(\frac{x}{3}-\frac{1}{2}\right)-45\left(\frac{x}{5}-\frac{2}{3}\right)\left(\frac{4x^2}{3}+1\right)=22x^2\)
\(\Leftrightarrow12x^3-18x^2-12x^3-9x+40x^2+30=22x^2\)
\(\Leftrightarrow22x^2-9x+30=22x^2\)
\(\Leftrightarrow-9x+30=0\)
\(\Leftrightarrow-9x=-30\)
\(\Leftrightarrow x=\frac{10}{3}\)
Tìm x biết :
a) 3(5/3x-7)-2(1.5x+6)-(5-x)(x+4)=80+x^2
b) 4/5x^2(x/3-1/2)-(1/5x-2/3)(4x^2/3+1)=22/45x^2
Câu B đây;vừa bị lag
B, \(\frac{x+1}{35}\)+\(\frac{x+3}{33}\)=\(\frac{x+5}{31}\)+\(\frac{x+7}{29}\)
⇔ \(\frac{x+1}{35}\)+1+\(\frac{x+3}{33}\)+1=\(\frac{x+5}{31}\)+1+\(\frac{x+7}{29}\)+1
⇔ \(\frac{x+36}{35}\)+\(\frac{x+36}{33}\)-\(\frac{x+36}{31}\)-\(\frac{x+36}{29}\)=0
⇔ (x+36)(\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\))=0
Mà \(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\)<0
⇔ x+36=0
⇔ x=-36
Vậy tập nghiệm của phương trình đã cho là:S={-36}
câu C tương tự nhé
a)
<=> 10x - 35 + 16x - 10 = 5
<=> 10x + 16x = 5 + 35 + 10
<=> 26x = 50
<=> x = 50/26 = 25/13
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)