Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)
Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)
và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)
=>n - 2009 = 1 =>n = 2010
Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)
Vậy giá trị lớn nhất của A là 2011 khi n=2010
Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)
Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)
Ta có bảng sau:
n + 3 | 9 | -9 | 3 | -3 | 1 | -1 |
n | 6 | -12 | 0 | -6 | -2 | -4 |
Có: \(-\left|2x+1\right|\le0\)
=>\(46,6-\left|2x+1\right|\le46,6\)
Vậy GTLN của B là 46,6 khi \(x=-\frac{1}{2}\)
Với mọi x, ta luôn có : -|2x+1| \(\le0\)
\(\Rightarrow46,6-\left|2x+1\right|\le46,6\)
=> Max B = 46,6 <=> x = -1/2
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
\(Tacó\)
\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)
\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)
b, \(K=\frac{2}{3+4n}\)
\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)
Áp dụng tính chất:\(|A|\ge0\)(Dấu "=" xảy ra khi và chỉ khi A=0)
Ta có\(A\ge0+0+0=0\)
Suy ra để A nhỏ nhát \(\Leftrightarrow\hept{\begin{cases}7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{10}=\frac{y}{14}\left(1\right)\\2z-3x=0\Rightarrow2z=3x\Rightarrow\frac{z}{3}=\frac{x}{2}\Rightarrow\frac{z}{15}=\frac{x}{10}\left(2\right)\\xy+yz+xz-2000=0\Rightarrow xy+yz+xz=2000\left(3\right)\end{cases}}\)
Từ (1) và (2)
\(\Rightarrow\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\left(k\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\left(4\right)\)
Thay (4) vào (3)
\(\Rightarrow10k14k+14k15k+10k15k=2000\)
\(\Rightarrow140k^2+210k^2+150k^2=2000\)
\(\Rightarrow500k^2=2000\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
Lần lượt thay K ta tìm đc các giá trị của x,y,z
Vậy ...
2. Ta có: n + S ( n ) + S ( S (n) ) = 60
Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) )
=> n + n + n \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60
=> 3n \(\ge\)60
=> n \(\ge\)20
=> 20 \(\le\)n \(\le\)60
Đặt: n = \(\overline{ab}\)
=> \(2\le a\le6\)
và \(2+0\le a+b\le5+9\)
=> \(2\le a+b\le14\)
a + b | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
\(\overline{ab}\) | 56 | 54 | 52 | 50 | 48 | 46 | 44 | 42 | 40 | 47 | 45 | 43 | 41 |
loại | loại | loại | tm | loại | loại | tm | loại | loại | tm | loại | loại | loại |
Vậy n = 50; n = 44 hoặc n = 47
1. Ta có: a + 3c = 2016 ; a + 2b = 2017
=> a + 3c + a + 2b = 2016 + 2017
=> 2a + 2b + 2c + c = 4033
=> 2 ( a + b + c ) = 4033 - c
mà a, b, c không âm
=> c \(\ge\)0
Để P = a + b + c đạt giá trị lớn nhất
<=> 2 ( a + b + c ) đạt giá trị lớn nhất
<=> 4033 - c đạt giá trị lớn nhất
<=> c đạt giá trị bé nhất
=> c = 0
=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2
Vậy max P = 0 + 2016 + 1/2 = 4033/2
a) \(\left|2y-3\right|-\frac{1}{7}=\frac{3}{4}\)
=> \(\left|2y-3\right|=\frac{3}{4}+\frac{1}{7}\)
=> \(\left|2y-3\right|=\frac{25}{28}\)
=> \(\orbr{\begin{cases}2y-3=\frac{25}{28}\\2y-3=-\frac{25}{28}\end{cases}}\)
=> \(\orbr{\begin{cases}2y=\frac{109}{28}\\2y=\frac{59}{28}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{109}{56}\\x=\frac{59}{56}\end{cases}}\)
Tính GTLN
a) Ta có: -|2x - 5| \(\le\)0 \(\forall\)x
=> -|2x - 5| + 32 \(\le\)32 \(\forall\)x
Hay A \(\le\)32 \(\forall\)x
Dấu "=" xảy ra khi : 2x - 5 = 0 <=> 2x = 5 <=> x = 5/2
Vậy Max của A = 32 tại x = 5/2
\(C=\left|y^2+1\right|+2020\)
Ta có: \(y^2\ge0\Leftrightarrow y^2+1\ge1\Leftrightarrow\left|y^2+1\right|\ge1\)
\(\Leftrightarrow C=\left|y^2+1\right|+2020\ge2021\)
Vậy \(C_{min}=2021\)
(Dấu "="\(\Leftrightarrow y^2+1=1\Leftrightarrow y^2=0\Leftrightarrow y=0\))