Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Khi bớt ở cả tử số và mẫu số của một phân số thì hiệu giữa mẫu số và tử số của phân số đó không thay đổi. Vậy hiệu giữa mẫu số và tử số là:
47 - 23 = 24
Coi tử số mới là 7 phần bằng nhau thì mẫu số mới là 13 phần như thế, hiệu là 24.
Hiệu số phần bằng nhau là:
13 - 7 = 6 (phần)
Giá trị 1 phần là:
24 : 6 = 4
Tử số mới là:
4 . 7 = 28
Số nguyên cần tìm là:
23 - 28 = -5
Đáp số: -5
Bài 1:
Giải:
Gọi số nguyên đó là a ( \(a\in Z\) )
Theo bài ra ta có:
\(\frac{23-a}{47-a}=\frac{7}{13}\Rightarrow\left(23-a\right).13=7.\left(47-a\right)\)
\(\Rightarrow299-13a=329-7a\)
\(\Rightarrow13a-7a=299-329\)
\(\Rightarrow6a=-30\)
\(\Rightarrow a=-5\)
Vậy số cần tìm là -5
Theo đề ta có:
\(\frac{a}{b}=\frac{a+6}{b+9}\)\(\Rightarrow a\left(b+9\right)=b\left(a+6\right)\)
\(\Rightarrow ab+9a=ab+6b\)
\(\Rightarrow ab+9a-ab-6b=0\)
\(\Rightarrow9x-6y=0\)
\(\Rightarrow9x=6y\Rightarrow\frac{x}{y}=\frac{6}{9}=\frac{2}{3}\)
Vậy phân số đó là \(\frac{2}{3}\)
Theo đề ta có:
\(\frac{a}{b}=\frac{a+6}{b+9}\Rightarrow a\left(b+9\right)=b\left(a+6\right)\)
\(\Rightarrow ab+9a=ab+6b\)
\(\Rightarrow ab+9a-ab-6b=0\)
\(\Rightarrow9a-6b=0\)
\(\Rightarrow9a=6b\Rightarrow\frac{a}{b}=\frac{6}{9}=\frac{2}{3}\)
Vậy phân số phải tìm là \(\frac{2}{3}\)
Cộng thêm tử và mẫu thêm 3 đơn vị thì phân số mới là;
\(\frac{4+3}{5+3}\)
Gạch bỏ số giống nhau, ta vẫn được phân số cũ, đó là:
\(\frac{4}{5}\)
Vậy: Cùng cộng thêm tử và mẫu thêm 3 đơn vị thì phân số vẫn bằng nhau!