K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

Ta có: \(a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

=    \(a^2+a^2+2a+1+a^2\left(a^2+2a+1\right)\)=\(2a^2+2a+1+a^4+2a^3+a^2\)

=\(a^4+a^2+1+2\left(a^3+a^2+a\right)=\left(a^2+a+1\right)^2\)là SCP (đpcm)

22 tháng 8 2017

sai đề

hahaha bọn mày ơi 

vào trang chủ của : Edward Newgate đê 

hắn bảo ta trẻ trâu chẳng lẽ hắn lớn trâu chắc :))

7 tháng 3 2019

\(A=n^6-n^4+2n^3+2n^2\)

\(=n^2\left(n^4-n^2+2n+2\right)=n^2[n^2\left(n^2-1\right)+2\left(n+1\right)]\)

\(=n^2\left[\left(n+1\right)\left(n^3-n+2\right)\right]=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)

\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Xét \(n^2-2n+2\)

Ta có: \(n^2-2n+2=n^2-2n+1+1=\left(n-1\right)^2+1>\left(n-1\right)^2\)

Lại có: \(n^2-2n+2=n^2-\left(2n-2\right)< n^2\)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)

Mà \(\left(n-1\right)^2;n^2\)là hai số chính phương liên tiếp.

\(\Rightarrow n^2-2n+2\)không thể là số chính phương.

\(\Rightarrow n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)không thể là số chính phương.

Vậy A không là số chính phương.