Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(A=\left|3x-\frac{1}{2}\right|+\frac{1}{5}\ge\frac{1}{5}\)
Dấu bằng xảy ra
\(\Leftrightarrow3x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy GTNN của biểu thức \(A=\frac{1}{5}\)\(\Leftrightarrow x=\frac{1}{6}\)
+) \(B=\frac{4}{5}-\left|2x-\frac{1}{3}\right|\le\frac{4}{5}\)
Dấu bằng xảy ra
\(\Leftrightarrow2x-\frac{1}{3}=0\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy GTLN của biểu thức \(B=\frac{4}{5}\)\(\Leftrightarrow x=\frac{1}{6}\)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
a, Ta có: \(A=\left|x+2\right|+\left|x-5\right|=\left|x+2\right|+\left|5-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|x+2\right|+\left|5-x\right|\ge\left|x+2+5-x\right|=\left|7\right|=7\)
Dấu " = " khi \(\left\{{}\begin{matrix}x+2\ge0\\5-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le5\end{matrix}\right.\)
Vậy \(MIN_A=7\) khi \(-2\le x\le5\)
b, Ta có: \(\left\{{}\begin{matrix}\left|2x-1\right|\ge0\\\left|2y+3\right|\ge0\end{matrix}\right.\Leftrightarrow\left|2x-1\right|+\left|2y+3\right|\ge0\)
\(\Leftrightarrow B=\left|2x-1\right|+\left|2y+3\right|-2017\ge-2017\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|2x-1\right|=0\\\left|2y+3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(MIN_B=-2017\) khi \(x=\dfrac{1}{2}\) và \(y=\dfrac{-3}{2}\)
giúp mình với ,mình cần gấp