Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 1
=> MinA = 8 <=> x = 1
B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x
Dấu "=" xảy ra khi x = -3
=> MinB = -12 <=> x = -3
C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 2
=> MinC = 8 <=> x = 2
D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxD = 11 <=> x = -2
a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)
b/
1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Suy ra Min A = 7 <=> x = 2
2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra Min B = 1/4 <=> x = 1/2
3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(\ge-\frac{9}{2}\)
Suy ra Min N = -9/2 <=> x = 1/2
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Bài làm:
#Tìm Max của biểu thức:
\(A=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)
Mà \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}-\frac{\left(2x+1\right)^2}{x^2+1}\le0\left(\forall x\right)\)
\(\Rightarrow A\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
Vậy \(Max\left(A\right)=4\Leftrightarrow x=-\frac{1}{2}\)
#Tìm Max và Min của B:
Tìm Min
\(B=\frac{2x}{x^2+1}=\frac{\left(x^2+2x+1\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\)
Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}\frac{\left(x+1\right)^2}{x^2+1}\ge0\left(\forall x\right)\)
\(\Rightarrow B\ge-1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x+1\right)^2\ge0\Rightarrow x=-1\)
Vậy \(Min\left(B\right)=-1\Leftrightarrow x=-1\)
Tìm Max
\(B=\frac{2x}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1\right)}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\)
Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\Rightarrow-\frac{\left(x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)
\(\Rightarrow B\le1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Max\left(B\right)=1\Leftrightarrow x=1\)
Sao dạo này nhìu bạn đăng mấy câu như vậy lên thế nhỉ?
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
Bài 1:
a)
*) Xét \(x< 0,5\)
\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=1-x+1-2x+2-x=4-4x\)
Do \(x< 0,5\Leftrightarrow4x< 2\Leftrightarrow-4x>-2\Leftrightarrow4-4x>-2+4\Leftrightarrow4-4x>2~~~~~~~~\left(1\right)\)
*) Xét \(0,5\le x\le1\).
\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=1-x+2x-1+2-x=2~~~~~~~~\left(2\right)\)
*) Xét \(1< x< 2\)
\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=x-1+2x-1+2-x=2x\)
Do \(1< x< 2\Leftrightarrow2< 2x< 4~~~~~~~\left(3\right)\)
*) Xét \(2\le x\)
\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=x-1+2x-1+x-2=4x-4\)
Do \(2\le x\Rightarrow4x\ge8\Rightarrow4x-4\ge4~~~~~~~~~\left(4\right)\)
Từ (1);(2);(3):(4) \(\Rightarrow_{min}A=2\)khi \(0,5\le x\le1\)
b) Mình nghĩ đề nên là \(\left(2x-1\right)^2-6\left|2x-1\right|+5\)
c) \(C=\left(2x-1\right)^2-3\left|2x-1\right|+2\)
Đặt \(\left|2x-1\right|=y\)
Ta có: \(C=\left(2x-1\right)^2-3\left|2x-1\right|+2=\left|2x-1\right|^2-3\left|2x-1\right|+2=y^2-3y+2\)
\(=\left(y^2-3y+2,25\right)-0,25=\left(y-1,5\right)^2-0,25\ge-0,25\)
Dấu "=" xảy ra khi \(y=1,5\)
\(\Rightarrow\left|2x-1\right|=1,5\Leftrightarrow\)\(\left[{}\begin{matrix}2x-1=1,5\\2x-1=-1,5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1,25\\x=-0,25\end{matrix}\right.\)
Vậy \(_{min}C=-0,25\) khi \(x=1,25\) hoặc \(x=-0,25\)
d)
Ta có: \(x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2++\dfrac{3}{4}>0\)
\(\Rightarrow D=x^2+x+1+\left|x^2+x-12\right|=x^2+x+1+\left|12-x^2-x\right|\ge x^2+x+1+12-x^2-x=13\)Dấu"=" xảy ra khi:
\(12-x^2-x\ge0\Rightarrow\left(x+4\right)\left(x-3\right)\ge0\)
Do \(x+4>x-3\Rightarrow\left\{{}\begin{matrix}x+4\ge0\\x-3\le0\end{matrix}\right.\)\(\Leftrightarrow3\ge x\ge-4\)
Vậy \(_{min}D=13\) khi \(3\ge x\ge-4\)
P/s: trước hết thế đã nhé
@phynit: Tại sao giờ em sử dụng \(L_AT_EX\) nó đảo tùm lum vậy ạ