Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\overline{31x4y}\)chia hết cho cả \(2\)và \(5\)nên \(y=0\).
\(\overline{31x40}\)chia hết cho \(9\)nên \(3+1+x+4+0=8+x\)chia hết cho \(9\)suy ra \(x=1\).
d) \(\overline{17xy}\)chia cho \(5\)dư \(1\)nên \(y=1\)hoặc \(y=6\).
Mà \(\overline{17xy}\)chia hết cho \(2\)nên \(y=6\).
\(\overline{17x6}\)chia hết cho \(3\)nên \(1+7+x+6=14+x\)chia hết cho \(3\).
Do đó \(x\in\left\{1;4;7\right\}\).
1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)
=>y=4
=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9
=> (x+22) chia hết cho 9
=>x=5
vậy số cần tìm là 53784
1.b)3x23y chia hết cho 5 => y chia hết cho 5
=>y= 0 hoặc 5
TH1.1: nếu y=0,x là chẵn
=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)
=>5-(x+3) hoặc (x+3)-5 chia hết cho 11
ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11
nếu (x+3)-5=0 thì x=2(chọn)
nếu (x+3)-5=11 thì x=13(loại)
nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)
vậy số cần tìm là 32230
K CHO MÌNH NHÉ !!!!!!
1) Ta có: 6n-1=2(3n+2)-5
Để 6n-1 chia hết cho 3n+2 thì 2(3n+2)-5 phải chia hết cho 3n+2
=> -5 phải chia hết cho 3n+2 vì 2(3n+2) chia hết cho 3n+2
Vì \(n\inℤ\Rightarrow3n+2\inℤ\Rightarrow3n+2\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng giá trị
3n+2 | -5 | -1 | 1 | 5 |
3n | -7 | -3 | -1 | 3 |
n | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Đối chiếu điều kiện \(x\inℤ\)
Vậy n=\(\pm1\)
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Rightarrow\frac{1}{6}+\frac{y}{3}=\frac{5}{x}\)
\(\Rightarrow\frac{1}{6}+\frac{2y}{6}=\frac{5}{x}\)
\(\Rightarrow x\left(1+2y\right)=30\)
\(\Rightarrow x;1+2y\inƯ\left(30\right)=\left\{\pm1;\pm3;\pm5;\pm6;\pm10\pm30\right\}\)
Vì 2y là số chẵn => 1+2y là số lẻ
=> 1+2y là ước lẻ của 30
Ta có bảng:
x | -5 | -3 | -1 | 1 | 3 | 5 |
1+2y | -6 | -10 | -30 | 30 | 10 | 6 |
2y | -5 | -9 | -29 | 29 | 9 | 5 |
y | \(\frac{-5}{2}\) | \(\frac{-9}{2}\) | \(\frac{-29}{2}\) | \(\frac{29}{2}\) | \(\frac{9}{2}\) | \(\frac{5}{2}\) |
=> x;y \(\in\varnothing\)
1.
g/ 2xy chia hết cho 4 và 11.
Để 2xy chia hết cho 4 thì xy chia hết cho 4.
xy c {12 ; 16 ; 20 ; ... ; 96}
- 2xy = 212 không chia hết cho 11.
- 2xy = 216 không chia hết cho 11.
- 2xy = 220 chia hết cho 11.
Vậy, 2xy = 220.
5/
c) a38 chia hết cho 6
6 = 2 . 3
Để a38 chia hết cho 6 thì a38 chia hết cho 2 và 3.
a38 đã thoả mãn điều kiện chia hết cho 2 vì tận cùng của số đó là số 8.
Ta có: a38 = a + 3 + 8 = a + 11 => a c {1 ; 4 ; 7}
Vậy, a38 c {138 ; 438 ; 738}
Bài 1:
$\overline{31x4y}\vdots 2$ nên $y$ là số chẵn.
$\Rightarrow y\in \left\{0;2;4;6;8\right\}$
Nếu $y=0$. Để $\overline{31x40}\vdots 3;9$ thì:
$3+1+x+4+0\vdots 9\Rightarrow 8+x\vdots 9\Rightarrow x=1$. Ta được số $31140$
Nếu $y=2$. Để $\overline{31x42}\vdots 3;9$ thì:
$3+1+x+4+2\vdots 9\Rightarrow 10+x\vdots 9\Rightarrow x=8$. Ta được số $31842$
Nếu $y=4$. Để $\overline{31x44}\vdots 3;9$ thì:
$3+1+x+4+4\vdots 9\Rightarrow 12+x\vdots 9\Rightarrow x=6$. Ta được số $31644$
Tương tự ta xét TH $y=6$ và $y=8$ ta được số $31446, 31248$
Bài 2:
$n-6\vdots n-2$
$\Rightarrow (n-2)-4\vdots n-2$
$\Rightarrow 4\vdots n-2$
$\Rightarrow n-2\in Ư(4)$
$\Rightarrow n-2\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow n\in \left\{3; 1; 4; 0; 6; -2\right\}$