K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

Ta có: a = 4b + 1 

=> a + 7 = 4b + 1  + 7= 4b +  8 \(⋮\)

=> 8 \(⋮b\) và b là số tự nhiên 

=> b\(\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)

+ b =  1=> a = 5 => a + 2b = 5 +2 .1 = 7 là số nguyên tố ( thỏa mãn )

+) b = 2 => a = 9 => a + 2b = 9 + 2 . 2 = 13 là số nguyên tố ( thỏa mãn )

+) b = 4 => a = 17 => a + 2b = 17 + 2.4 = 25 không là số nguyên tố ( loại )

+) b = 8 => a = 33 => a + 2b = 49 không là số nguyen tố ( loại )

Vậy có các cặp (a; b ) là ( 5; 1) và ( 9; 2).

19 tháng 3 2017

tuyeenr ban trai

lương:tích

điều kiện: phải có ảnh chân dung

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

2 tháng 4 2018

  zdvdz