Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có cái nịt |
|
|||||
|
|
|||||
|
|
|||||
|
|
|||||
|
|
bai 1 : 45
bai 2 : 53
bai 3 ; so be : 456
so lon : 693
con loi giai thi to chiu
Gọi số cần tìm là ab ( 0 < a < 10 ; b < 10 ). Theo đầu bài ta có:
ab : ( a + b ) = 5 ( dư 12 )
=> ab = 5 * ( a + b ) + 12
=> 10a + b = 5a + 5b + 12
=> ( 10a - 5a ) + ( b - 5b ) = 12
=> 5a - 4b = 12
Do 12 chia hết cho 4 mà 4b chia hết cho 4 nên 5a chia hết cho 4.
Mà ( 5 ; 4 ) = 1 nên a chia hết cho 4. Kết hợp với điều kiện trên suy ra: a = { 4 ; 8 }
- Nếu a = 4 thì b = ( 5 * 4 - 12 ) : 4 = 2
Khi đó a + b = 4 + 2 = 6 bé hơn 13, nghĩa là số chia bé hơn số dư ( vô lí )
- Nếu a = 8 thì b = ( 5 * 8 - 12 ) : 4 = 7
Khi đó a + b = 8 + 7 = 15 lớn hơn 13, nghĩa là số chia lớn hơn số dư ( hợp lí )
Vậy số cần tìm là 87.
1)
Gọi số có hai chữ số đó là \(\overline{ab}\)\(\left(0\le b\le9,0< a\le9,a;b\in N\right)\)
Theo bài ra, ta có:
\(\overline{ab}:a=11\)dư \(2\)
\(\Rightarrow\overline{ab}=11.a+2\)
\(\Leftrightarrow a.10+b=a.11+2\)
\(\Leftrightarrow b=a+2\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(1;3\right);\left(2;4\right);\left(3;5\right)\left(4;6\right);\left(5;7\right);\left(6;8\right);\left(7;9\right)\right\}\)
Vậy \(\overline{ab}\in\left\{13;24;35;46;57;68;79\right\}.\)
2)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:b=12\)dư \(3\)
\(\Rightarrow\overline{ab}=12.b+3\)
\(\Rightarrow a.10+b=b.12+3\)
\(\Rightarrow a.10=b.11+3\)
Do \(a.10⋮10\)mà \(3:10\)dư \(3\)\(\Rightarrow b.11:10\)dư \(7\)
\(\Rightarrow b=7\)
\(\Rightarrow a.10=7.11+3\)
\(\Rightarrow a.10=80\)
\(\Rightarrow a=80:10=8\)
Vậy số đó là \(87.\)
3)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:b=9\)
\(\Rightarrow a.10+b=b.9\)
\(\Rightarrow a.10=b.8\)
\(\Leftrightarrow5.a=4.b\)
\(\Rightarrow\hept{\begin{cases}a=4\\b=5\end{cases}}\)
Vậy số đó là \(45.\)
4)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:a=12\)
\(\Rightarrow a.10+b=a.12\)
\(\Rightarrow b=2.a\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(1;2\right);\left(2;4\right);\left(3;6\right);\left(4;8\right)\right\}\)
Vậy \(\overline{ab}\in\left\{12;24;36;48\right\}.\)
5)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:\left(a+b\right)=5\)dư \(12\) \(\Rightarrow a+b>12\)( * )
\(\Rightarrow\overline{ab}=5.\left(a+b\right)+12\)
\(\Rightarrow10.a+b=5.a+5.b+12\)
\(\Rightarrow5a=4b+12\)
Do \(4b⋮4;12⋮4\Rightarrow5a⋮4\)
Mà \(\left(5,4\right)=1\Rightarrow a⋮4\)
\(\Rightarrow a\in\left\{4;8\right\}\)
+ Nếu \(a=4\):
\(\Rightarrow5.4=b.4+12\)
\(\Rightarrow5=b+3\)
\(\Rightarrow b=5-3=2\)
Khi đó : \(a+b=4+2< 12\)( mâu thuẫn với (*) )
+ Nếu \(a=8\):
\(5.8=4.b+12\)
\(\Rightarrow5.2=b+3\)
\(\Rightarrow b=10-3=7\)
Khi đó : \(8+7=15>12\)( hợp lý với ( * ) )
Vậy số đó là \(87.\)
Theo đề bài ta có :
ab / (a+b)=8
(a*10+b)/(a+b)=8
(a*10+b)*a+(a*10+b)*b=8
a*a*10+a*b+a*10*b+b*b=8
a*(a*10+b+10*b)+b*b=8
Các bài khác cũng làm theo mod này nhé
Cùng là fan One Piece thì giúp nhau đi
Gọi số phải tìm là ab
hiệu các chữ số đó là c
Theo bài ra ta có :
ab = c.28 + 1 => c = 1,2,3
+ Nếu c = 1 thì ab = 29
TL : 9 - 2 = 7 , 29 : 7 = 4 dư 1 ( L )
+ Nếu c = 2 thì ab = 57
TL : 7 - 5 = 2 , 57 : 2 = 28 dư 1 ( Đ )
+ Nếu c = 3 thì ab = 85
TL : 8 - 5 = 3, 85 : 3 = 28 dư 1 ( Đ )
Vậy SPT là : 57 và 85
Đ/S : 57; 85
Giải
Gọi số phải tìm là ab
hiệu các chữ số đó là c
Theo bài ra ta có :
ab = c.28 + 1 => c = 1,2,3
+ Nếu c = 1 thì ab = 29
TL : 9 - 2 = 7 , 29 : 7 = 4 dư 1 ( L )
+ Nếu c = 2 thì ab = 57
TL : 7 - 5 = 2 , 57 : 2 = 28 dư 1 ( Đ )
+ Nếu c = 3 thì ab = 85
TL : 8 - 5 = 3, 85 : 3 = 28 dư 1 ( Đ )
Vậy SPT là : 57 và 85
Giải:
Gọi số phải tìm là ab và hiệu các chữ số của nó bằng c.
Theo bài ra ta có:
ab = c x 28 + 1, vậy c bằng 1, 2 hoặc 3.
+ Nếu c = 1 thì ab = 29.
Thử lại: 9 – 2 = 7 khác 1 (loại)
+ Nếu c = 2 thì ab = 57.
Thử lại: 7 – 5 = 2 ; 57: 2 = 28 (dư 1)
+ Nếu c= 3 thì ab = 58.
Thử lại: 8 – 5 = 3 ; 85: 3 = 28 (dư 1)
Vậy số phải tìm là 85 và 57.
Giải:
Cách 1:
Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 x a x b x c.
Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 x a + 10 x b + 5 = 25 x a x b.
20 x a + 2 x b +1 = 5 x a x b.
Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.
Thử lại: 175 = 5 x 7 x 5.
Vậy số phải tìm là 175.
Cách 2:
Tương tự cach 1 ta có:
ab5 = 25 x a x b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.