Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABD\)và \(\Delta EBD\)có:
\(AB=EB\) (gt)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
\(BD\) cạnh chung
suy ra: \(\Delta ABD=\Delta EBD\) (c.g.c)
b) \(\Delta ABD=\Delta EBD\) \(\Rightarrow\)\(AD=ED\)(2 cạnh tương ứng); \(\widehat{BAD}=\widehat{BED}=90^0\)(2 góc tương ứng)
Xét 2 tam giác vuông: \(\Delta DAM\)và \(\Delta DEC\)có:
\(DA=DE\) (cmt)
\(\widehat{ADM}=\widehat{EDC}\) (dd)
suy ra: \(\Delta DAM=\Delta DEC\) (cạnh góc vuông - góc nhọn kề cạnh ấy)
\(\Rightarrow\)\(AM=EC\)(2 cạnh tương ứng)
c) \(\Delta DAE\) cân tại D (do DA = DE)
\(\Rightarrow\)\(\widehat{DAE}=\widehat{DEA}\)
mà \(\widehat{DAM}=\widehat{DEC}\) ( \(=90^0\))
suy ra: \(\widehat{DAE}+\widehat{DAM}=\widehat{DEA}+\widehat{DEC}\)
hay \(\widehat{MAE}=\widehat{AEC}\) (đpcm)
a) Xét tam giác ABD và EBD có :
BA = BE;
Cạnh BD chung
\(\widehat{ABD}=\widehat{EBD}\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) Do \(\Delta ABD=\Delta EBD\Rightarrow AD=ED;\widehat{BAD}=\widehat{BED}=90^o\)
nên \(\widehat{DAM}=\widehat{DEC}\)
Vậy thì \(\Delta ABM=\Delta EDC\left(g-c-g\right)\)
\(\Rightarrow AM=EC\)
c) Ta có DA = DE nên \(\widehat{DAE}=\widehat{DEA}\)
Vậy nên \(\widehat{AEC}=\widehat{DEC}+\widehat{AED}=\widehat{DAM}+EAD=\widehat{EAM}\)
Bài 1:
Ta có hình vẽ: A B C K H I 1 1 1 a) Ta có: AB \(\perp\) AC
HK \(\perp\) AC
=> AB // HK
b) Xét 2 tam giác vuông AHK và tam giác AHI có:
HK = HI (gt)
AH là cạnh chung
=> tam giác AHK = tam giác AHI (2 cạnh góc vuông)
=> AK = AI (2 cạnh tương ứng)
=> tam giác AKI cân tại A
c) Vì AB // HK nên
góc B1 = K1 (so le trong)
mà góc K1 = góc I1 (vì tam giác AHK = tam giác AHI)
=> góc B1 = I1
Vậy góc BAK = góc AIK
d) Xét 2 tam giác vuông CHK và tam giác CHI có:
HK = HI (gt)
CH là cạnh chung
=> tam giác CHK = tam giác CHI (2 cạnh góc vuông)
=> CH = CI (2 cạnh tương ứng)
Xét 2 tam giác AIC và tam giác AKC có:
AK = AH (cmt)
CH = CI (cmt)
AC là cạnh chung
=> tam giác AIC = tam giác AKC (c-c-c)
Bài 3:
Ta có hình vẽ: A B C I H K 10 10 12 a) Xét 2 tam giác vuông ACI và tam giác BCI có:
CA = CB (=10 cm)
CI là cạnh chung
=> tam giác ACI = tam giác BCI (cạnh huyền- cạnh góc vuông)
=> AI = BI (2 cạnh tương ứng)
b) Ta có: AI + BI = AB
mà AI = BI (cmt)
AB = 12 cm
=> AI = BI = \(\dfrac{12}{2}\) = 6 cm
Xét tam giác ACI vuông tại I áp dụng định lý Pytago có:
\(CA^2 = AI^2 + CI^2 \)
hay \(10^2 = 6^2 + CI^2\)
=> \(CI^2 = 10^2 - 6^2 = 100 - 36 = 64\)
=> \(CI = \) \(\sqrt{64}\) = 8
c) Xét 2 tam giác vuông AHI và tam giác BKI có:
AI = BI (cmt)
góc A = góc B (vì tam giác ACI = tam giác BCI)
=> tam giác AHI = tam giác BKI (cạnh huyền- góc nhọn)
=> HI = KI (2 cạnh tương ứng)
A B C M D E
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB = AC ( gt )
BM = CM ( M là trung điểm BC )
AM : Cạnh chung
=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )
b) Ta có : \(\Delta ABM\) = \(\Delta ACM\) ( cmt )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90
Hay AM \(\bot\) BC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Bài 1:
a) Xét tam giác ABM và tam giác ACM
có: AB = AC (gt)
góc BAM = góc CAM (gt)
AM là cạnh chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b) Xét tam giác ABC
có: AB = AC
=> tam giác ABC cân tại A ( định lí tam giác cân)
mà AM là tia phân giác xuất phát từ đỉnh A ( M thuộc BC)
=> M là trung điểm của BC, AM vuông góc với BC ( tính chất đường phân giác, đường cao, đường trung trực, đường trung tuyến, đường cao xuất phát từ đỉnh tam giác cân)
Bài 2:
a) Xét tam giác ABD và tam giác EBD
có: AB = EB (gt)
góc ABD = góc EBD (gt)
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> góc BAD = góc BED ( 2 góc tương ứng)
mà góc BAD = 90 độ ( tam giác ABC vuông tại A)
=> góc BED = 90 độ