K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Bài 3:

Ta có:

\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(...\)+\(\frac{1}{2010^2}\)<\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2009.2010}\)

Xét:\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+.....+\(\frac{1}{2009+2010}\)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)=\(1-\frac{1}{2010}\)<1

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2010^2}< 1\)

\(\)Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< 1\)

21 tháng 7 2017

c, 4C= (1.2.3+2.3.4+3.4.5+...+8.9.10) .4

==> 4C= [1.2.3.(4-0) + 2.3.4-(5-1) + 8.9.10.(11-7)

==>4C= 1.2.3.4 - 1.2.3.4+ 2.3.4.5-2.3.4.5 + 7.8.9.10- 7.8.9.10 + 8.9.10.11

==> 4C= 8.9.10.11=7920

==> C= 7920 :4=1980

a, Ta có: 3A= 1.2.3+2.3.3+3.4.3+...+99.100.3

               3A=1.2.(3-0) + 2.3.(4-1)+ 3.4.(5-2)+ ... + 99.100.( 101-98)

               3A=(1.2.3 + 2.3.4+ 3.4.5+ 99.100.101) - (0.1.2 +1.2.3+ 2.3.4 + ... + 98.99.100)

               3A= 99.100.101 - 0.1.2

               3A= 999900 - 0

               3A= 999900

    ==> A= 999900 : 3

   ==> A= 333300

9 tháng 6 2017

Giải:

a, \(B=1^2+2^2+3^2+...+99^2+100^2.\)

\(B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)+100\left(101-1\right).\)

\(B=1.2-1.1+2.3-1.2+3.4-1.3+...+99.100-1.99+100.101-1.100.\)

\(B=\left(1.2+2.3+3.4+...+99.100+100.101\right)-\left(1+2+3+...+100\right).\)

\(B=\dfrac{\left[1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\right]}{3}+\dfrac{100\left(100+1\right)}{2}.\)

\(B=\dfrac{\left(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\right)}{3}+5050.\)

\(B=\dfrac{100.101.102}{3}+5050.\)

\(B=343400+5050=348450.\)

Vậy \(B=348450.\)

\(C=...\) (làm tương tự con \(B\)).

9 tháng 6 2017

\(D=...\) (hình như đề sai).

\(T=1.100+2.99+3.98+...+99.2+100.1.\)

\(T=1.100+2.\left(100-1\right)+3.\left(100-2\right)+...+99\left(100-98\right)+100\left(100-99\right).\)

\(T=1.100+100.2+1.2+100.3+2.3+...+100.99+98.99+100.100+99.100.\)

\(T=100\left(1+2+3+...+100\right)-\left(1.2+2.3+3.4+...+99.100\right).\)

\(T=100.\dfrac{100.101}{2}-\dfrac{99.100.101}{3}.\)

\(T=100.5050-333300.\)

\(T=505000-333300=171700.\)

Vậy \(T=171700.\)

\(S=1.2.3+2.3.4+3.4.5+...+98.99.100.\)

\(4S=4\left(1.2.3+2.3.4+3.4.5+...+98.99.100\right).\)

\(4S=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4.\)

\(4S=1.2.3\left(5-1\right)+2.3.4\left(6-2\right)+...+98.99.100\left(101-97\right).\)

\(4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100.\)

\(4S=\left(1.2.3.4-1.2.3.4\right)+\left(2.3.4.5-2.3.4.5\right)+...+\left(97.98.99.100-97.98.99.100\right)+98.99.100.101.\)

\(4S=0+0+...+0+98.99.100.101.\)

\(4S=98.99.100.101.\)

\(4S=97990200.\)

\(\Rightarrow S=\dfrac{97990200}{4}=24497550.\)

Vậy \(S=24497550.\)

~ Học tốt!!! ~

3 tháng 7 2019

a)A=\(\frac{\left(8+100\right).\left[\left(100-8\right):4+1\right]}{2}=\frac{108.242}{2}=13068\) 

b) \(5B=5^2+5^3+...+5^{101}\) 

  \(5B-B=5^{101}-5\) 

\(B=\frac{5^{101}-5}{4}\)

10 tháng 10 2017

ôc cho

11 tháng 10 2017

t k bt làm nên moj ?

21 tháng 11 2016

câu này trong violympic mình làm rồi kết quả =22121944

21 tháng 11 2016

=2.000002001x10mũ 12