Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm từng phần thôi dài quá
Bài 1 :
Gọi số tự nhiên đầu tiên tiên là a
=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5
= 6a + 15
mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết
Bài 2 :
Ta thấy : 3^2018 có tận cùng là 1 số lẻ
11^2017 cũng có tận cùng là một số lẻ
=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2
bài 1 ko
bài 2
ta có \(\hept{\begin{cases}3^{2018}=3^{2016}.3^2=\left(3^4\right)^{504}.9=81^{504}.9=\cdot\cdot\cdot1.9=\cdot\cdot\cdot9\\11^{2017}=\cdot\cdot\cdot1\end{cases}}\)
\(\Rightarrow3^{2018}-11^{2017}=\cdot\cdot\cdot9-\cdot\cdot\cdot1=\cdot\cdot\cdot8⋮2\left(ĐPCM\right)\)
bài 3
a)
\(n+4⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(\text{4}\right)\)
\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)
b)
\(3n+7⋮n\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\)
\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)
Bài 1:
Tổng của 6 STN liên tiếp coi là:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15⋮̸6\)
KL: Tổng của 6 STN liên tiếp không chia hết cho 6.
Bài 2:
\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )
\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)
KL; đpcm.
Bài 3 :
a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)
KL: ...
b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)
KL: ...
1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15\)
\(=6.a+12+3\)
\(=6.\left(x+2\right)+3\)
Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3
Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6
2) Ta có 3 là số lẻ nên 32018 là số lẻ
11 là số lẻ nên 112017 là số lẻ
Do đó 32018-112017là số chẵn nên chia hết cho 2
3)\(n+4⋮n\)
có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
4)\(3n+7⋮n\)
có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
gọi 4 số tự nhiên liên tiếp là a, a+1,a+2,a+3
tổng của 3 tự nhien liên tiếp là: a+a+1+a+2=3a+3=3.(a+1) chia hết cho 3
tổng của 4 số tự nhiên liên tiếp là: a+a+1+a+2+a+3=4a+6=4.(a+1)+2 ko chia hết cho 4
thanks bn những bn có thể tra lời giúp mình hết có được ko???
a) A=550-548+542-540+...+56-54+52-1
52A=552-550+548-546+....+54-52
52A+A=(552-550+.....+54-52)+(550-548+...+52-1)
26A=552+1
A= \(\frac{5^{52}+1}{26}\)
nghĩ là ko và có có còn lí do thì chị quên rồi
Không. Vì ta có số:1 2 3 4 5 6 tổng của 3 số là 21 mà 21 không chia hết cho 6 nên tổng của 6 số tự nhiên liên tiếp không chia hết cho 6
Mk mới lớp 5
Chỉ bít z thôi
K mk nhé