Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{17}{9}-\frac{17}{9}:\left(\frac{7}{3}+\frac{1}{2}\right)\)
= \(\frac{17}{9}-\frac{17}{9}:\frac{17}{6}\)
= \(\frac{17}{9}-\frac{2}{3}\)
= \(\frac{11}{9}\)
b) \(\frac{4}{3}.\frac{2}{5}-\frac{3}{4}.\frac{2}{5}\)
= \(\frac{2}{5}.\left(\frac{4}{3}-\frac{3}{4}\right)\)
= \(\frac{2}{5}.\frac{7}{12}\)
= \(\frac{7}{30}\)
Mình lười làm quá, hay mình nói kết quả cho bn thôi nha
c) -6
d) 3
e) 3
g) 12
h) \(\frac{23}{18}\)
i) \(\frac{-69}{20}\)
k) \(\frac{-1}{2}\)
l) \(\frac{49}{5}\)
Gửi tạm trước 2 câu !
\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)
Trả lời :
\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
\(\left(\frac{2}{5}\right)^6.\left(\frac{25}{4}\right)^2\)
\(=\left[\left(\frac{2}{5}\right)^3\right]^2.\left(\frac{25}{4}\right)^2\)
\(=\left[\left(\frac{2}{5}\right)^3.\frac{25}{4}\right]^2\)
\(=\left[\frac{8}{125}.\frac{25}{4}\right]^2\)
\(=\left(\frac{2}{5}\right)^2\)
\(=\frac{4}{25}\)
\(15\frac{1}{5}:\left(\frac{-5}{7}\right)-25\frac{1}{5}.\left(\frac{-7}{5}\right)\)
\(=15\frac{1}{5}.\frac{-7}{5}-25\frac{1}{5}.\frac{-7}{5}\)
\(=\frac{-7}{5}\left(15\frac{1}{5}-25\frac{1}{5}\right)\)
\(=\frac{-7}{5}.\left(-10\right)\)
\(=14\)
\(A = {1\over2}-{3\over4}+{5\over6}-{7\over12}={6\over12}-{9\over12}+{10\over12}-{7\over12}\)\(={0\over12}=0\)
Bây giờ tạm gọi các biểu thức ở mỗi bài lần lượt là A;B;C;...
a/\(A=3^2.\frac{1}{3^5}.3^8.\frac{1}{3^3}=3^2=9\)
b/\(B=\frac{3^{10}.3^5.5^5}{-5^6.3^{14}}=\frac{-3}{5}\)
c/\(C=2^3+3.1-\frac{1}{2^2}.2^2+\frac{2^2}{2}.2^3=8+3-1+16=26\)
d/\(D=\frac{3^4}{2^8}.\frac{2^{12}}{3^8}=\frac{2^4}{3^4}=\frac{16}{81}\)
e/\(E=\frac{-31^3}{2^9}.\frac{2^{20}}{31^4}=\frac{-2^{11}}{31}=\frac{-2048}{31}\)
f/\(F=\frac{-3^5}{2^{10}}.\frac{2^{20}}{3^{10}}=\frac{-2^{10}}{3^5}=\frac{-1024}{243}\)
\(\text{1, }\frac{27^4.9^3}{81^2}=\frac{\left(3^3\right)^4.\left(3^2\right)^3}{\left(3^4\right)^2}=\frac{3^{12}.3^6}{3^8}=3^{10}\)
\(\text{2, }\left(\frac{1}{5}\right)^{2002}.\left(-5\right)^{2000}=\frac{1}{5^{2002}}.5^{2000}=\frac{5^{2000}}{5^{2002}}=\frac{1}{5^2}=\frac{1}{5^2}\)
\(\text{3, }\frac{4^{11}.4^5}{2^{31}}=\frac{2^{22}.2^{10}}{2^{31}}=\frac{2^{32}}{2^{31}}=2\)
\(\text{4, }3^2.\frac{1}{243}.81^2.\frac{1}{3^2}=\frac{3^2.81^2}{3^5.3^2}=\frac{3^2.3^8}{3^7}=\frac{3^{10}}{3^7}=3^3=27\)
\(\text{5, }4^2.\frac{25^2}{2^3.5^2}+32.125=\frac{2^4.5^4}{2^3.5^2}+2^5.5^3=2.5^2+2^5.5^2=5^2.\left(2+2^5.5\right)=25.\left(2+32.5\right)=25.162=4050\)