Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
1) \(VT=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}=VP\)(ĐPCM)
2) \(VT=\text{[}\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\text{]}.\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)
\(=\frac{\left(a+b-\sqrt{ab}-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}=\frac{\left(a-b\right)^2}{\left(a-b\right)^2}=1=VP\)(ĐPCM)
4) \(VT=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)(ĐPCM)
1) \(\frac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\cdot\left|a-b\right|=a^2\)(Vì a > b => a - b > 0 và a^2 luôn dương với mọi a)
2) \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì \(a\ge0\))
3) \(\sqrt{13}a\cdot\sqrt{\frac{52}{a}}=\frac{a\cdot\sqrt{13}\cdot\sqrt{4\cdot13}}{\sqrt{a}}=\frac{2a\cdot\sqrt{13\cdot13}}{\sqrt{a}}=26\sqrt{a}\)(vì a > 0)
2/
a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)
b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" khi \(a=b=\frac{1}{4}\)
c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm
Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)
Cộng vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
Dấu "=" khi \(x=y=z\)
d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)
\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)
e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)
\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)
Chứng minh:
\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)
\(\Leftrightarrow2\left(\sqrt{b+1}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)
\(\Leftrightarrow\frac{2}{\sqrt{b+1}+\sqrt{b}}< \frac{1}{\sqrt{b}}\)
\(\Leftrightarrow2\sqrt{b}< \sqrt{b+1}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{b}< \sqrt{b+1}\)(đúng)
Cái còn lại tương tự
Đề bài đâu bn?