Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) C/M ΔABH ∼ ΔCBA, ΔBAM ∼ ΔBCD
Xét ΔABH và ΔCBA, ta có:
\(\widehat{AHB}=\widehat{CAB}=90^0\left(gt\right)\)
\(\widehat{B}:chung\)
Vậy ...................................
Xét ΔBAM và ΔBCD, ta có:
\(\widehat{ABM}=\widehat{CBD}\) (BD phân giác)
\(\widehat{BAM}=\widehat{BCD}\) ( cùng phụ với \(\widehat{HAC}\))
Vậy ......................................
b) C/M \(\frac{AB}{AD}=\frac{CB}{CD}\) và AB.AM = BC.HM
Ta có BD phân giác \(\widehat{B}\) (gt)
⇒ \(\frac{AB}{AD}=\frac{CB}{CD}\) (T/C đường phân giác)
Ta có BM phân giác \(\widehat{B}\) (do M∈BD)
⇒ \(\frac{AM}{HM}=\frac{AB}{BH}\) (T/C đường phân giác)
Mà \(\frac{AB}{BH}=\frac{BC}{AB}\) (do ΔABH ∼ ΔCBA)
⇒ \(\frac{AM}{HM}=\frac{BC}{AB}\)
Vậy AB.AM = BC.HH
TẠM THỜI MÌNH GIẢI a VỚI b NHA, c GIÀI SAU
Từ câu b ta có:
\(AB.AM=BC.HM\Rightarrow\frac{AM}{HM}=\frac{BC}{AB}=3\Rightarrow AM=3HM\)
\(\Rightarrow\frac{AH}{HM}=\frac{AM+HM}{HM}=\frac{4HM}{HM}=4\Rightarrow AH=4HM\)
Lại có:
\(\Delta ABH\sim\Delta CAB\Rightarrow\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow BH=\frac{AB^2}{BC}=\frac{AB^2}{3AB}=\frac{AB}{3}\)
\(AB=\frac{1}{3}BC\Rightarrow BH=\frac{1}{9}BC\Rightarrow BC=9BH\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4HM.9BH=36.\left(\frac{1}{2}HM.BH\right)=36.S_{BHM}\)
a) trong tam giác ADC có AC=CD(gt)
=> tam giác ADC cân ( dhnb)
Mà CM là trung tuyến(M là trung điểm)
=>CM vuông góc với AD
=> GÓC CMD=90 độ
Xét tam giác HAD và tam giác MCD có
góc AHD= góc CMD (=90 độ)
góc ADC: chung
=> tam giác HAD đồng dạng với tam giác MCD
b, tam giác HAD đồng dạng vs tam giác MCD
=>MD/HD=CD/AD
=>MD.AD=HD.CD
=>MD.1/2MD=HD.CD
=>MD^2/2=DH.CD